12 research outputs found

    Synthesis of efficient iron phosphide catalyst for electrocatalytic hydrogen generation

    No full text
    A solvothermal synthesis of iron phosphide electrocatalysts using triphenylphosphine (TPP) as phosphorus precursor is presented. The synthetic protocol generates Fe2P/FeP phase at 350°C. After deposition of the catalyst onto graphite substrate heat-treatment at higher temperature was carried out. Annealing at 500°C under reductive atmosphere induced structural changes in the Fe2P/FeP samples which yielded a pure Fe2P phase. The electrocatalytic activity of the Fe2P catalyst was studied for hydrogen evolution reaction (HER) in 0.5 M H2SO4. The recorded overpotential for HER was about 130 mV vs. a reversible hydrogen electrode (RHE) at 10 mA cm−

    High Catalytic Activity in CO Oxidation over MnOx Nanocrystals

    No full text
    Manganese oxides of various stoichiometry were prepared via Mn-oxalate precipitation followed by thermal decomposition in the presence of oxygen. A nonstoichiometric manganese oxide, MnOx (x = 1.61…1.67) was obtained by annealing at 633 K and demonstrated superior CO oxidation activity, i.e. full CO conversion at room temperature and below. The activity gradually decreased with time-on-stream of the reactants but could be easily recovered by heating at 633 K in the presence of oxygen. CO oxidation over MnOx in the absence of oxygen proved to be possible with reduced rates and demonstrated a Mars—van Krevelen—type mechanism to be in operation. A TEM structural analysis showed the MnOx phase to form microrods with large aspect ratio which broke up into nanocrystalline manganese oxide (MnOx) particles with diameters below 3 nm and a BET specific surface area of 525 m2/g. Annealing at 798 K rather than 633 K produced well crystalline Mn2O3 which showed lower CO oxidation activity, i.e. 100% CO conversion at 335 K. The catalytic performance in CO oxidation of various Mn-oxides either studied in this work or elsewhere was compared on the basis of specific reaction rates.info:eu-repo/semantics/publishe

    Structural and Optical Properties of Mg and Cd Doped ZnO Nanoclusters

    No full text
    Global optimization and data-mining techniques have been used to generate the structures of Mg and Cd doped ZnO nanoclusters. The energy has been evaluated at three levels: interatomic potentials during the filtering stage, generalized gradient based (PBE) density functional theory during the refinement of structures, and hybrid (PBE0) density functional theory for the final electronic solutions used for the prediction of the cluster optical absorption spectra. The excitonic energies have been obtained using timedependent density functional theory including asymptotic corrections. We considered three characteristic sizes of the host (ZnO)n cluster (n = 4, 6, 8) including all chemically sensible structural types as determined from their relative energy rankings and all possible dopant permutations. Thus, an exhaustive set of the solution structures could be assessed using onfigurational entropic contributions to the cluster free energy, which allowed us to draw a conclusion as to the oxide miscibility at this end of the size scale. With the exception of low temperature magnesium doped n = 4 and 6 nanoclusters, we find a continuous series of stable clusters. The former are predicted to disproportionate to the pure binary structures, which could be attributed to the competition between different structural types adopted by end members. The optical behavior of most stable clusters considered is contrary to the quantum confinement model
    corecore