47 research outputs found

    Five mucosal transcripts of interest in ulcerative colitis identified by quantitative real-time PCR: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cause and pathophysiology of ulcerative colitis are both mainly unknown. We have previously used whole-genome microarray technique on biopsies obtained from patients with ulcerative colitis to identifiy 5 changed mucosal transcripts. The aim of this study was to compare mucosal expressions of these five transcripts in ulcerative colitis patients vs. controls, along with the transcript expression in relation to the clinical ulcerative colitis status.</p> <p>Methods</p> <p>Colonic mucosal specimens from rectum and caecum were taken at ambulatory colonoscopy from ulcerative colitis patients (<it>n </it>= 49) with defined inflammatory activity and disease extension, and from controls (<it>n </it>= 67) without inflammatory bowel disease. The five mucosal transcripts aldolase B, elafin, MST-1, simNIPhom and SLC6A14 were analyzed using quantitative real-time PCR.</p> <p>Results</p> <p>Significant transcript differences in the rectal mucosa for all five transcripts were demonstrated in ulcerative colitis patients compared to controls. The grade of transcript expression was related to the clinical disease activity.</p> <p>Conclusion</p> <p>The five gene transcripts were changed in patients with ulcerative colitis, and were related to the disease activity. The known biological function of some of the transcripts may contribute to the inflammatory features and indicate a possible role of microbes in ulcerative colitis. The findings may also contribute to our pathophysiological understanding of ulcerative colitis.</p

    Host Genes Related to Paneth Cells and Xenobiotic Metabolism Are Associated with Shifts in Human Ileum-Associated Microbial Composition

    Get PDF
    The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected on 84 subjects with ileal Crohn’s disease, ulcerative colitis or control patients without inflammatory bowel diseases in order to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD). Ex-vivo ileal mucosal biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R) and the ATG16L1T300A variant. Whole human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were determined by 454 pyrosequencing of the V3–V5 hypervariable region of the bacterial 16 S rRNA gene. The results of permutation based multivariate analysis of variance and covariance (MANCOVA) support the hypothesis that host mucosal Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions

    Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic inflammation is well known to be a risk factor for colon cancer. Previously we established a novel mouse model of inflammation-related colon carcinogenesis, which is useful to examine the involvement of inflammation in colon carcinogenesis. To shed light on the alterations in global gene expression in the background of inflammation-related colon cancer and gain further insights into the molecular mechanisms underlying inflammation-related colon carcinogenesis, we conducted a comprehensive DNA microarray analysis using our model.</p> <p>Methods</p> <p>Male ICR mice were given a single ip injection of azoxymethane (AOM, 10 mg/kg body weight), followed by the addition of 2% (w/v) dextran sodium sulfate (DSS) to their drinking water for 7 days, starting 1 week after the AOM injection. We performed DNA microarray analysis (Affymetrix GeneChip) on non-tumorous mucosa obtained from mice that received AOM/DSS, AOM alone, and DSS alone, and untreated mice at wks 5 and 10.</p> <p>Results</p> <p>Markedly up-regulated genes in the colonic mucosa given AOM/DSS at wk 5 or 10 included Wnt inhibitory factor 1 (<it>Wif1</it>, 48.5-fold increase at wk 5 and 5.7-fold increase at wk 10) and plasminogen activator, tissue (<it>Plat</it>, 48.5-fold increase at wk 5), myelocytomatosis oncogene (<it>Myc</it>, 3.0-fold increase at wk 5), and phospholipase A2, group IIA (platelets, synovial fluid) (<it>Plscr2</it>, 8.0-fold increase at wk 10). The notable down-regulated genes in the colonic mucosa of mice treated with AOM/DSS were the peroxisome proliferator activated receptor binding protein (<it>Pparbp</it>, 0.06-fold decrease at wk 10) and the transforming growth factor, beta 3 (<it>Tgfb3</it>, 0.14-fold decrease at wk 10). The inflammation-related gene, peroxisome proliferator activated receptor γ (<it>Pparγ </it>0.38-fold decrease at wk 5), was also down-regulated in the colonic mucosa of mice that received AOM/DSS.</p> <p>Conclusion</p> <p>This is the first report describing global gene expression analysis of an AOM/DSS-induced mouse colon carcinogenesis model, and our findings provide new insights into the mechanisms of inflammation-related colon carcinogenesis and the establishment of novel therapies and preventative strategies against carcinogenesis.</p

    Inflammatory bowel disease: past, present, and future

    Get PDF
    Crohn’s disease and ulcerative colitis, collectively known as the inflammatory bowel diseases (IBD), are largely diseases of the twentieth century, and are associated with the rise of modern, Westernized industrial society. Although the causes of these diseases remain incompletely understood, the prevailing model is that the intestinal flora drives an unmitigated intestinal immune response and inflammation in the genetically susceptible host. A review of the past and present of these diseases shows that detailed description preceded more fundamental elucidation of the disease processes. Working out the details of disease pathogenesis, in turn, has yielded dividends in more focused and effective therapy for IBD. This article highlights the key descriptions of the past, and the pivotal findings of current studies in disease pathogenesis and its connection to medical therapy. Future directions in the IBD will likely explicate the inhomogeneous causes of these diseases, with implications for individualized therapy

    Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4) phenotype

    Get PDF
    Background: Severe congenital neutropenia type 4 (SCN4) is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3). Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4) is caused by autosomal recessive mutations in SLC45A2. Methods: We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. Results: The siblings’ phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with “partial OCA” in childhood. Conclusions: This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders

    Developmental regulation of rat intrinsic factor mRNA

    No full text

    T cells with Fc receptors for IgA: induction of T alpha cells in vivo and in vitro by purified IgA.

    Full text link
    Abstract Previous studies demonstrated that BALB/c mice with the IgA-secreting plasmacytomas MOPC-315 (alpha lambda 2), MOPC-167 (alpha kappa), McPC-603 (alpha kappa) and TEPC-15 (alpha kappa) developed large numbers of T cells with surface membrane receptors for IgA (T alpha cells). The lack of T alpha cell expansion in mice with variant plasmacytomas that were nonsecretors or low secretors of IgA implied that elevated serum IgA contributed to the increase in T alpha cells. The present studies show that normal BALB/c mice that were given daily injections of 30 mg of IgA (M315 protein) develop a marked increase in the number of T alpha cells. These studies also show that the T alpha cells induced by injection of IgA are Lyt1-2+ T cells. In addition, the data presented demonstrate that nylon wool nonadherent T cells, treated with purified polymeric IgA (M315 protein) in vitro, develop a marked increase in the number of T alpha cells. The in vitro induction of T alpha cells by IgA requires DNA and protein synthesis. These findings indicate that the T alpha cell expansion observed in mice with IgA myeloma is related to the high serum level of IgA and not to the myeloma tumor per se. In addition, these observations have a more general relevance to the issue of B cell regulation because they demonstrate that secreted immunoglobulin can directly induce expansion of immunoregulatory T cells.</jats:p
    corecore