9 research outputs found

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya

    Get PDF
    The present study was conducted along the Mugling–Narayanghat road section and its surrounding region that is most affected by landslide and related mass-movement phenomena. The main rock types in the study area are limestone, dolomite, slate, phyllite, quartzite and amphibolites of Lesser Himalaya, sandstone, mudstone and conglomerates of Siwaliks and Holocene Deposits. Due to the important role of geology and rock weathering in the instabilities, an attempt has been made to understand the relationship between these phenomena. Consequently, landslides of the road section and its surrounding region have been assessed using remote sensing, Geographical information systems and multiple field visits. A landslide inventory map was prepared and comprising 275 landslides. Nine landslides representing the whole area were selected for detailed studies. Field surveys, integrated with laboratory tests, were used as the main criteria for determining the weathering zones in the landslide area. From the overall study, it is seen that large and complex landslides are related to deep rock weathering followed by the intervention of geological structures as faults, joints and fractures. Rotational types of landslides are observed in highly weathered rocks, where the dip direction of the foliation plane together with the rock weathering plays a principle role. Shallow landslides are developed in the slope covered by residual soil or colluviums. The rock is rather fresh below these covers. Some shallow landslides (rock topples) are related to the attitude of the foliation plane and are generally observed in fresh rocks. Debris slides and debris flows occur in colluviums or residual soil-covered slopes. In few instances, they are also related to the rock fall occurring at higher slopes. The materials from the rock fall are mixed with the colluviums and other materials lying on the slope downhill and flow as debris flow. Rock falls are mainly related to the joint pattern and the slope angle. They are found in less-weathered rocks. From all these, it is concluded that the rock weathering followed by geological structures has prominent role in the rock slope instability along Mugling–Narayanghat road section and its surrounding regions

    Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal

    No full text
    The Dumre Besi landslide is one of the largest and most problematic failures on the Mugling-Narayanghat Highway in central Nepal. Though it was triggered by the monsoon rain of 2003, geological structures and rock weathering have played a key role in its initiation and further aggravation. The slide is also controlled to some extent by the groundwater and rugged topography with high slope angles. The landslide zone comprises thinly laminated light grey siltstone with numerous crosscutting quartz veins, grey metasandstone (quartzite), bluish grey to white phyllite, black carbonaceous slate, and dolomite. A thrust fault passes through the centre of the landslide, creating a thick deposit of loose, weathered rock material, and the fault has developed a very thick shattered zone where weathering is very intense. Using field and laboratory analyses, the rocks in the landslide zone can be divided into five zones based on the severity of weathering: none, slight, moderate, severe, and complete. Laboratory analyses showed that the chemically weathered rocks are significantly rich in smectite and vermiculite. Out of these, smectite is the most critical one, as it swells when wet. The formation mechanism of the clay minerals was analysed by various techniques, including X-ray diffraction, X-ray fluorescence, and thin-section analysis, and it was found that most of them were derived from weathering of rock. The clay minerals significantly reduced the rock strength and facilitated the extensive failure of Dumre Besi. The wide fault zone with deeply weathered and clay-rich debris is also responsible for the formation of debris flows in the monsoon season.ArticleLANDSLIDES. 10(1):1-13 (2013)journal articl
    corecore