34 research outputs found
Scanning Quantum Dot Microscopy
Interactions between atomic and molecular objects are to a large extent
defined by the nanoscale electrostatic potentials which these objects produce.
We introduce a scanning probe technique that enables three-dimensional imaging
of local electrostatic potential fields with sub-nanometer resolution.
Registering single electron charging events of a molecular quantum dot attached
to the tip of a (qPlus tuning fork) atomic force microscope operated at 5 K, we
quantitatively measure the quadrupole field of a single molecule and the dipole
field of a single metal adatom, both adsorbed on a clean metal surface. Because
of its high sensitivity, the technique can record electrostatic potentials at
large distances from their sources, which above all will help to image complex
samples with increased surface roughness.Comment: main text: 5 pages, 4 figures, supplementary information file: 4
pages, 2 figure
Transfering spin into an extended Ļ orbital of a large molecule
By means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS), we have investigated the adsorption of single Au atoms on a PTCDA monolayer physisorbed on the Au(111) surface. A chemical reaction between the Au atom and the PTCDA molecule leads to the formation of a radical that has an unpaired electron in its highest occupied orbital. This orbital is a Ļ orbital that extends over the whole Au-PTCDA complex. Because of the large Coulomb repulsion in this orbital, the unpaired electron generates a local moment when the molecule is adsorbed on the Au(111) surface. We demonstrate the formation of the radical and the existence of the local moment after adsorption by observing a zero-bias differential conductance peak that originates from the Kondo effect. By temperature dependent measurements of the zero-bias differential conductance, we determine the Kondo temperature to be TK=(38Ā±8)K. For the theoretical description of the properties of the Au-PTCDA complex we use a hierarchy of methods, ranging from density functional theory (DFT) including a van der Waals correction to many-body perturbation theory (MBPT) and the numerical renormalization group (NRG) approach. Regarding the high-energy orbital spectrum, we obtain an excellent agreement with experiments by both spin-polarized DFT/MBPT and NRG. Moreover, the NRG provides an accurate description of the low-energy excitation spectrum of the spin degree of freedom, predicting a Kondo temperature very close to the experimental value. This is achieved by a detailed analysis of the universality of various definitions of TK and by taking into account the full energy dependence of the coupling function between the molecule-metal complex and the metallic substrate
Scanning quantum dot microscopy: A quantitative method to measure local electrostatic potential near surfaces
In this paper we review a recently introduced microscopy technique, scanning quantum dot microscopy (SQDM), which delivers quantitative maps of local electrostatic potential near surfaces in three dimensions. The key to achieving SQDM imaging is the functionalization of a scanning probe microscope tip with a Ļ-conjugated molecule that acts as a gateable QD. Mapping of electrostatic potential with SQDM is performed by gating the QD by the bias voltage applied to the scanning probe microscope junction and registering changes of the QD charge state with frequency-modulated atomic force microscopy
Inelastic electron tunneling spectroscopy for probing strongly correlated many-body systems by scanning tunneling microscopy
We present an extension of the tunneling theory for scanning tunneling microscopy (STM) to include different types of electron-vibrational couplings responsible for inelastic contributions to the tunnel current in the strong-coupling limit. It allows for a better understanding of more complex scanning tunneling spectra of molecules on a metallic substrate in separating elastic and inelastic contributions. The starting point is the exact solution of the spectral functions for the electronically active local orbitals in the absence of the STM tip. This includes electron-phonon coupling in the coupled system comprising the molecule and the substrate to arbitrary order including the antiadiabatic strong-coupling regime as well as the Kondo effect on a free-electron spin of the molecule. The tunneling current is derived in second order of the tunneling matrix element which is expanded in powers of the relevant vibrational displacements. We use the results of an ab initio calculation for the single-particle electronic properties as an adapted material-specific input for a numerical renormalization group approach for accurately determining the electronic properties of a 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride molecule on Ag(111) as a challenging sample system for our theory. Our analysis shows that the mismatch between the ab initio many-body calculation of the tunnel current in the absence of any electron-phonon coupling to the experimental scanning tunneling spectra can be resolved by including two mechanisms: (i) a strong unconventional Holstein term on the local substrate orbital leads to the reduction of the Kondo temperature and (ii) a further electron-vibrational coupling to the tunneling matrix element is responsible for inelastic steps in the dI/dV curve at finite frequencie
Effects of Periodic Pore Ordering on Photocatalytic Hydrogen Generation with Mesoporous Semiconductor Oxides
Crystalline and 3D continuous mesoporous quaternary CsTaWO6 semiconductors are prepared with different degrees of longārange periodic order and local order, respectively, to investigate the influence of periodic pore order on the photocatalytic performance in hydrogen evolution of mesoporous photocatalysts. The degree of longārange order of the mesopores is changed by modifying the ratio between metal precursors and soft polymer template poly(isopreneābāstyreneābāethylene oxide) (PIābāPSābāPEO; ISO) in the solāgel synthesis. Longārange periodic order is found to have no appreciable advantage compared with an only locally ordered continuous pore system. On the contrary, nonperiodically ordered mesopores result in higher activity toward photocatalytic hydrogen evolution, even with slightly smaller pore diameter and lower cumulative pore volume. Most importantly, it is shown that pore connectivity and heterogeneous pore systems in mesoporous photocatalysts play a major role for hydrogen evolution when other parameters are confirmed to be not rate limiting