1,747 research outputs found
Normal Mode Determination of Perovskite Crystal Structures with Octahedral Rotations: Theory and Applications
Nuclear site analysis methods are used to enumerate the normal modes of
perovskite polymorphs with octahedral rotations. We provide the modes
of the fourteen subgroups of the cubic aristotype describing the Glazer
octahedral tilt patterns, which are obtained from rotations of the
octahedra with different sense and amplitude about high symmetry axes. We
tabulate all normal modes of each tilt system and specify the contribution of
each atomic species to the mode displacement pattern, elucidating the physical
meaning of the symmetry unique modes. We have systematically generated 705
schematic atomic displacement patterns for the normal modes of all 15 (14
rotated + 1 unrotated) Glazer tilt systems. We show through some illustrative
examples how to use these tables to identify the octahedral rotations,
symmetric breathing, and first-order Jahn-Teller anti-symmetric breathing
distortions of the octahedra, and the associated Raman selection
rules. We anticipate that these tables and schematics will be useful in
understanding the lattice dynamics of bulk perovskites and would serve as
reference point in elucidating the atomic origin of a wide range of physical
properties in synthetic perovskite thin films and superlattices.Comment: 17 pages, 3 figures, 17 tables. Supporting information accessed
through link specified within manuscrip
Fish Cohort Dynamics: Application of Complementary Modeling Approaches
The recruitment to the adult stock of a fish population is a function of both environmental conditions and the dynamics of juvenile fish cohorts. These dynamics can be quite complicated and involve the size structure of the cohort. Two types of models, i-state distribution models (e.g., partial differential equations) and i-state configuration models (computer simulation models following many individuals simultaneously), have been developed to study this type of question. However, these two model types have not to our knowledge previously been compared in detail. Analytical solutions are obtained for three partial differential equation models of early life-history fish cohorts. Equivalent individual-by-individual computer simulation models are also used. These two approaches can produce similar results, which suggests that one may be able to use the approaches interchangeably under many circumstances. Simple uncorrected stochasticity in daily growth is added to the individual-by-individual models, and it is shown that this produces no significant difference from purely deterministic situations. However, when the stochasticity was temporally correlated such that a fish growing faster than the mean 1 d has a tendency to grow faster than the mean the next day, there can be great differences in the outcomes of the simulations.This research was sponsored in part by the Electric Power Research Institute under contract no. RP2932-2 (DOE no. ERD-87-672) with the U.S. Department of Energy under
contract no. DE-AC05-84OR21400 with Martin Marietta Energy Systems, and in part by grant no. NAI6RG0492-01 from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) to the University of North Carolina Sea Grant College Program
Modifier Genes as Therapeutics: The Nuclear Hormone Receptor Rev Erb Alpha (Nr1d1) Rescues Nr2e3 Associated Retinal Disease
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are
ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in
these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate
the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the
retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and
irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erba) rescues Nr2e3-
associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are
associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7
mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic
mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate
modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and
molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and
functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these
findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic
for retinal degenerations
Properties of C in the {\it ab initio} nuclear shell-model
We obtain properties of C in the {\it ab initio} no-core nuclear
shell-model. The effective Hamiltonians are derived microscopically from the
realistic CD-Bonn and the Argonne V8' nucleon-nucleon (NN) potentials as a
function of the finite harmonic oscillator basis space. Binding energies,
excitation spectra and electromagnetic properties are presented for model
spaces up to . The favorable comparison with available data is a
consequence of the underlying NN interaction rather than a phenomenological
fit.Comment: 9 pages, 2 figure
Loss of chromosome 11q21–23.1 and 17p and gain of chromosome 6p are independent prognostic indicators in B-cell non-Hodgkin's lymphoma
Comparative genomic hybridization (CGH) was employed to study chromosomal aberrations in relation to cell proliferation, apoptosis, and patient survival in 94 cases of B-cell non-Hodgkin's lymphoma diagnosed between 1983 and 1993. Eighty cases had aberrations by CGH. Chromosomal regions 1p21–31.1 (10%), 6cen-q24 (12%), 8p (11%), 9p21-ter (14%), 11q21–23.1 (11%), 13q13–21.1 (12%), and 17p (15%) were frequently lost. Gains were found at 3q21-ter (22%), 6p (11%), 7p (12%), 8q23-ter (13%), 12cen-q15 (17%), 17q24-ter (13%), and 18q13.3–21 (20%). A high number of aberrations (≥ 4, 33 cases) was associated (P ≤ 0.001) with the mantle cell and diffuse large B-cell lymphoma subtypes, a high fraction of tumour cells in S phase, and short survival (RR (relative risk) = 3.7). Loss of 1p21–31.1, 8p, 9p21-ter, 11q21–23.1, and 13q13–21.1 were associated with mantle cell lymphoma (P ≤ 0.03), while gain of 6p and 12cen-q15 were more frequent in diffuse large B-cell and small lymphocytic lymphoma, respectively (P = 0.04). Loss of 8p and 17p, and gain of 3q21-ter, 6p, 7p, and 8q23-ter were associated with a high S phase fraction (P ≤ 0.03), but none of the aberrations were associated with tumour apoptotic fraction (P ≥ 0.13). The most important prognostic CGH parameters (P < 0.001) were losses of 11q21–23.1 (RR = 3.8) and 17p (RR = 4.4), and gain of 6p (RR = 4.2). The latter parameters and IPI were the only ones with independent prognostic value (RR = 10, 5.0, 6.7, and 3.7, respectively; P < 0.001) when assessed together with lymphoma sub-type, primary versus relapse cases, treatment, B symptoms, S phase fraction, and presence of BCL1 and BCL2 translocations. A combined CGH/IPI binary parameter had high prognostic value for patients receiving different treatments, with various lymphoma sub-types, and for primary as well as relapse cases.© 2001 Cancer Research Campaign http://www.bjcancer.co
Persistence, extinction and spatio-temporal synchronization of SIRS cellular automata models
Spatially explicit models have been widely used in today's mathematical
ecology and epidemiology to study persistence and extinction of populations as
well as their spatial patterns. Here we extend the earlier work--static
dispersal between neighbouring individuals to mobility of individuals as well
as multi-patches environment. As is commonly found, the basic reproductive
ratio is maximized for the evolutionary stable strategy (ESS) on diseases'
persistence in mean-field theory. This has important implications, as it
implies that for a wide range of parameters that infection rate will tend
maximum. This is opposite with present results obtained in spatial explicit
models that infection rate is limited by upper bound. We observe the emergence
of trade-offs of extinction and persistence on the parameters of the infection
period and infection rate and show the extinction time having a linear
relationship with respect to system size. We further find that the higher
mobility can pronouncedly promote the persistence of spread of epidemics, i.e.,
the phase transition occurs from extinction domain to persistence domain, and
the spirals' wavelength increases as the mobility increasing and ultimately, it
will saturate at a certain value. Furthermore, for multi-patches case, we find
that the lower coupling strength leads to anti-phase oscillation of infected
fraction, while higher coupling strength corresponds to in-phase oscillation.Comment: 12page
Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure
Previous studies have suggested that there is a theoretical discrepancy between the cage size and the resultant tibial tuberosity advancement, with the cage size consistently providing less tibial tuberosity advancement than predicted. The purpose of this study was to test and quantify this in clinical cases. The hypothesis was that the advancement of the tibial tuberosity as measured by the widening of the proximal tibia at the tibial tuberosity level after a standard TTA, will be less than the cage sized used, with no particular cage size providing a relative smaller or higher under-advancement, and that the conformation of the proximal tibia will have an influence on the amount of advancement achieved
- …