20 research outputs found
TLR9 Agonist Protects Mice from Radiation-Induced Gastrointestinal Syndrome
Radiation-induced gastrointestinal syndrome (RIGS) is due to the clonogenic loss of crypt cells and villi depopulation, resulting in disruption of mucosal barrier, bacterial invasion, inflammation and sepsis. Intestinal macrophages could recognize invading bacterial DNA via TLR9 receptors and transmit regenerative signals to the neighboring crypt. We therefore investigated whether systemic administration of designer TLR9 agonist could ameliorate RIGS by activating TLR9.Male C57Bl6 mice were distributed in four experimental cohorts, whole body irradiation (WBI) (8.4-10.4 Gy), TLR9 agonist (1 mg/kg s.c.), 1 h pre- or post-WBI and TLR9 agonist+WBI+iMyd88 (pretreatment with inhibitory peptide against Myd88). Animals were observed for survival and intestine was harvested for histological analysis. BALB/c mice with CT26 colon tumors in abdominal wall were irradiated with 14 Gy single dose of whole abdominal irradiation (AIR) for tumor growth study.Mice receiving pre-WBI TLR9 agonist demonstrated improvement of survival after 10.4 Gy (p<0.03), 9.4 Gy (p<0.008) and 8.4 Gy (p<0.002) of WBI, compared to untreated or iMyd88-treated controls. Post-WBI TLR9 agonist mitigates up to 8.4 Gy WBI (p<0.01). Histological analysis and xylose absorption test demonstrated significant structural and functional restitution of the intestine in WBI+TLR9 agonist cohorts. Although, AIR reduced tumor growth, all animals died within 12 days from RIGS. TLR9 agonist improved the survival of mice beyond 28 days post-AIR (p<0.008) with significant reduction of tumor growth (p<0.0001).TLR9 agonist treatment could serve both as a prophylactic or mitigating agent against acute radiation syndrome and also as an adjuvant therapy to increase the therapeutic ratio of abdominal Radiation Therapy for Gastro Intestinal malignancies
Automated Reporter Quantification In Vivo: High-Throughput Screening Method for Reporter-Based Assays in Zebrafish
Reporter-based assays underlie many high-throughput screening (HTS) platforms, but most are limited to in vitro applications. Here, we report a simple whole-organism HTS method for quantifying changes in reporter intensity in individual zebrafish over time termed, Automated Reporter Quantification in vivo (ARQiv). ARQiv differs from current “high-content” (e.g., confocal imaging-based) whole-organism screening technologies by providing a purely quantitative data acquisition approach that affords marked improvements in throughput. ARQiv uses a fluorescence microplate reader with specific detection functionalities necessary for robust quantification of reporter signals in vivo. This approach is: 1) Rapid; achieving true HTS capacities (i.e., >50,000 units per day), 2) Reproducible; attaining HTS-compatible assay quality (i.e., Z'-factors of ≥0.5), and 3) Flexible; amenable to nearly any reporter-based assay in zebrafish embryos, larvae, or juveniles. ARQiv is used here to quantify changes in: 1) Cell number; loss and regeneration of two different fluorescently tagged cell types (pancreatic beta cells and rod photoreceptors), 2) Cell signaling; relative activity of a transgenic Notch-signaling reporter, and 3) Cell metabolism; accumulation of reactive oxygen species. In summary, ARQiv is a versatile and readily accessible approach facilitating evaluation of genetic and/or chemical manipulations in living zebrafish that complements current “high-content” whole-organism screening methods by providing a first-tier in vivo HTS drug discovery platform
Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential
Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918
Evaluation of the fullerene compound DF-1 as a radiation protector
<p>Abstract</p> <p>Background</p> <p>Fullerene compounds are known to possess antioxidant properties, a common property of chemical radioprotectors. DF-1 is a dendrofullerene nanoparticle with antioxidant properties previously found to be radioprotective in a zebrafish model. The purpose of this study was to evaluate the radioprotective effects of DF-1 in a murine model of lethal total body irradiation and to assess for selective radioprotection of normal cells versus tumor cells.</p> <p>Methods</p> <p><it>In vitro </it>radioresponse was evaluated with clonogenic assays with human tumor cells and fibroblast lines in the presence of varying concentrations of DF-1 or vehicle. DNA double strand break induction and repair was evaluated with immunocytochemistry for γH2AX. Lethal total body irradiation was delivered with 137Cs after intraperitoneal delivery of DF-1 or vehicle control. Bone marrow hypoxia was evaluated with piminidazole uptake assessed by flow cytometry.</p> <p>Results</p> <p>DF-1 provided modest radioprotection of human cancer cell lines and fibroblast cell lines when delivered prior to irradiation (dose modifying factor or 1.1). There was no evidence of selective protection of fibroblasts versus tumor cells. Cells treated with DF-1 at radioprotective doses were found to have fewer γH2AX foci at 1 and 6 hours after irradiation compared to vehicle treated controls. The LD50/30 for C57Bl6/Ncr mice treated with a single 300 mg/kg dose of DF-1 pre-irradiation was 10.09 Gy (95% CI 9.58-10.26) versus 8.29 Gy (95% CI, 8.21-8.32) for control mice. No protective effects were seen with a single 200 mg/kg dose. No increase in pimonidazole uptake was appreciated in bone marrow of mice treated with DF-1 compared to vehicle controls.</p> <p>Conclusions</p> <p>DF-1 has modest activity as a radiation protector <it>in vivo</it>. There was no evidence of selective protection from irradiation of normal versus tumor cells with DF-1.</p