37,192 research outputs found
Feedback laws for fuel minimization for transport aircraft
The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques
Piloted simulation of an algorithm for onboard control of time-optimal intercept
A piloted simulation of algorithms for onboard computation of trajectories for time-optimal intercept of a moving target by an F-8 aircraft is described. The algorithms, use singular perturbation techniques, generate commands in the cockpit. By centering the horizontal and vertical needles, the pilot flies an approximation to a time-optimal intercept trajectory. Example simulations are shown and statistical data on the pilot's performance when presented with different display and computation modes are described
Giant Fluctuations of Coulomb Drag in a Bilayer System
We have observed reproducible fluctuations of the Coulomb drag, both as a
function of magnetic field and electron concentration, which are a
manifestation of quantum interference of electrons in the layers. At low
temperatures the fluctuations exceed the average drag, giving rise to random
changes of the sign of the drag. The fluctuations are found to be much larger
than previously expected, and we propose a model which explains their
enhancement by considering fluctuations of local electron properties.Comment: 10 pages, 4 figure
Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection
Astrophysical neutrinos at EeV energies promise to be an interesting
source for astrophysics and particle physics. Detecting the predicted
cosmogenic (``GZK'') neutrinos at 10 - 10 eV would test models of
cosmic ray production at these energies and probe particle physics at 100
TeV center-of-mass energy. While IceCube could detect 1 GZK event per
year, it is necessary to detect 10 or more events per year in order to study
temporal, angular, and spectral distributions. The IceCube observatory may be
able to achieve such event rates with an extension including optical, radio,
and acoustic receivers. We present results from simulating such a hybrid
detector.Comment: 4 pages, 2 figures; to appear in the Proceedings of the 29th ICRC,
Pune, Indi
Life, Death and Preferential Attachment
Scientific communities are characterized by strong stratification. The highly
skewed frequency distribution of citations of published scientific papers
suggests a relatively small number of active, cited papers embedded in a sea of
inactive and uncited papers. We propose an analytically soluble model which
allows for the death of nodes. This model provides an excellent description of
the citation distributions for live and dead papers in the SPIRES database.
Further, this model suggests a novel and general mechanism for the generation
of power law distributions in networks whenever the fraction of active nodes is
small.Comment: 5 pages, 2 figure
Turbulence and Transport During Guide-Field Reconnection at the Magnetopause
We analyze the development and influence of turbulence in three-dimensional
particle-in-cell simulations of guide-field magnetic reconnection at the
magnetopause with parameters based on observations of an electron diffusion
region by the Magnetospheric Multiscale (MMS) mission. Along the separatrices
the turbulence is a variant of the lower hybrid drift instability (LHDI) that
produces electric field fluctuations with amplitudes much greater than the
reconnection electric field. The turbulence controls the scale length of the
density and current profiles while enabling significant transport across the
magnetopause despite the electrons remaining frozen-in to the magnetic field.
Near the X-line the electrons are not frozen-in and the turbulence, which
differs from the LHDI, makes a significant net contribution to the generalized
Ohm's law through an anomalous viscosity. The characteristics of the turbulence
and associated particle transport are consistent with fluctuation amplitudes in
the MMS observations. However, for this event the simulations suggest that the
MMS spacecraft were not close enough to the core of the electron diffusion
region to identify the region where anomalous viscosity is important
- …
