30,323 research outputs found

    Estimation of Kalman filter model parameters from an ensemble of tests

    Get PDF
    A methodology for estimating initial mean and covariance parameters in a Kalman filter model from an ensemble of nonidentical tests is presented. In addition, the problem of estimating time constants and process noise levels is addressed. Practical problems such as developing and validating inertial instrument error models from laboratory test data or developing error models of individual phases of a test are generally considered

    Jet-induced modifications of the characteristic of the bulk nuclear matter

    Full text link
    We present our studies on jet-induced modifications of the characteristic of the bulk nuclear matter. To describe such a matter, we use efficient relativistic hydrodynamic simulations in (3+1) dimensions employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.Comment: 2 pages, 3 figures, SQM2015 proceedings submitted to Journal of Physics: Conference Series (JPCS) - IOP Conference Serie

    Measurements of the semileptonic decays B[overbar]→Dℓν[overbar] and B[overbar]→D^*ℓν[overbar] using a global fit to DXℓν[overbar] final states

    Get PDF
    Semileptonic B[overbar] decays to DXℓν[overbar](ℓ=e or μ) are selected by reconstructing D^0ℓ and D^+ℓ combinations from a sample of 230×10^6 Υ(4S)→BB[overbar] decays recorded with the BABAR detector at the PEP-II e^+e^- collider at SLAC. A global fit to these samples in a three-dimensional space of kinematic variables is used to determine the branching fractions B(B^-→D^0ℓν[overbar])=(2.34±0.03±0.13)% and B(B^-→D^(*0)ℓν[overbar])=(5.40±0.02±0.21)% where the errors are statistical and systematic, respectively. The fit also determines form-factor parameters in a parametrization based on heavy quark effective theory, resulting in ρ_D^2=1.20±0.04±0.07 for B[overbar]→Dℓν[overbar] and ρ_(D*)^2=1.22±0.02±0.07 for B[overbar]→D^*ℓν[overbar]. These values are used to obtain the product of the Cabibbo-Kobayashi-Maskawa matrix element |V_(cb)| times the form factor at the zero recoil point for both B[overbar]→Dℓν[overbar] decays, G(1)|V_(cb)|=(43.1±0.8±2.3)×10^(-3), and for B[overbar]→D^*ℓν[overbar] decays, F(1)|V_(cb)|=(35.9±0.2±1.2)×10^(-3)

    Measurements of the τ mass and the mass difference of the τ^+ and τ^- at BABAR

    Get PDF
    We present the result from a precision measurement of the mass of the τ lepton, M_τ, based on 423  fb^(-1) of data recorded at the Υ(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, we determine the mass to be 1776.68±0.12(stat)±0.41(syst)  MeV. We also measure the mass difference between the τ^+ and τ^-, and obtain (M_(τ+)-M_(τ-))/M_(AVG)^τ=(-3.4±1.3(stat)±0.3(syst))×10^(-4), where M^τ_(AVG) is the average value of M_(τ+) and M_(τ-)

    Search for B^+→ℓ^+ν_ℓ recoiling against B^-→D^0ℓ^-ν̅ X

    Get PDF
    We present a search for the decay B^+→ℓ^+ν_ℓ(ℓ=τ, μ, or  e) in (458.9±5.1)×10^6 BB̅ pairs recorded with the BABAR detector at the PEP-II B-factory. We search for these B decays in a sample of B^+B^- events where one B-meson is reconstructed as B^-→D^0ℓ^-ν̅ X. Using the method of Feldman and Cousins, we obtain B(B^+→τ^+ν_τ)=(1.7±0.8±0.2)×10^(-4), which excludes zero at 2.3σ. We interpret the central value in the context of the standard model and find the B meson decay constant to be f_B^2=(62±31)×10^3   MeV^2. We find no evidence for B^+→e^+ν_e and B^+→μ^+ν_μ and set upper limits at the 90% C.L. B(B^+→e^+ν_e)<0.8×10^(-5) and B(B^+→μ^+ν_μ)<1.1×10^(-5)

    Observation of the χ_(c2)(2P) meson in the reaction γγ→DD at BABAR

    Get PDF
    A search for the Z(3930) resonance in γγ production of the DD system has been performed using a data sample corresponding to an integrated luminosity of 384  fb^(-1) recorded by the BABAR experiment at the PEP-II asymmetric-energy electron-positron collider. The DD invariant mass distribution shows clear evidence of the Z(3930) state with a significance of 5.8σ. We determine mass and width values of (3926.7±2.7±1.1)  MeV/c^2 and (21.3±6.8±3.6)  MeV, respectively. A decay angular analysis provides evidence that the Z(3930) is a tensor state with positive parity and C parity (J^(PC)=2^(++)); therefore we identify the Z(3930) state as the χ_(c2)(2P) meson. The value of the partial width Γ_(γγ)×B(Z(3930)→DD) is found to be (0.24±0.05±0.04)  keV

    Distribution of the spacing between two adjacent avoided crossings

    Full text link
    We consider the frequency at which avoided crossings appear in an energy level structure when an external field is applied to a quantum chaotic system. The distribution of the spacing in the parameter between two adjacent avoided crossings is investigated. Using a random matrix model, we find that the distribution of these spacings is well fitted by a power-law distribution for small spacings. The powers are 2 and 3 for the Gaussian orthogonal ensemble and Gaussian unitary ensemble, respectively. We also find that the distributions decay exponentially for large spacings. The distributions in concrete quantum chaotic systems agree with those of the random matrix model.Comment: 11 page

    Study of B → πlν and B → ρlν decays and determination of |V_(ub)|

    Get PDF
    We present an analysis of exclusive charmless semileptonic B-meson decays based on 377 × 10^6 BB̅ pairs recorded with the BABAR detector at the Υ(4S) resonance. We select four event samples corresponding to the decay modes B^0 → π^-ℓ^+ν, B^+ → π^0ℓ^+ν, B^0 → ρ^-ℓ^+ν, and B^+ → ρ^0ℓ^+ν and find the measured branching fractions to be consistent with isospin symmetry. Assuming isospin symmetry, we combine the two B → πℓν samples, and similarly the two B → ρℓν samples, and measure the branching fractions B(B^0→π^-ℓ^+ν)=(1.41 ± 0.05 ± 0.07) × 10^(-4) and B(B^0 → ρ^-ℓ^+ν)=(1.75 ± 0.15 ± 0.27) × 10^(-4), where the errors are statistical and systematic. We compare the measured distribution in q^2, the momentum transfer squared, with predictions for the form factors from QCD calculations and determine the Cabibbo-Kobayashi-Maskawa matrix element |V_(ub)|. Based on the measured partial branching fraction for B → πℓν in the range q^2 < 12  GeV^2 and the most recent QCD light-cone sum-rule calculations, we obtain |V_(ub)|=(3.78 ± 0.13^(+0.55)_(-0.40)) × 10^(-3), where the errors refer to the experimental and theoretical uncertainties. From a simultaneous fit to the data over the full q^2 range and the FNAL/MILC lattice QCD results, we obtain |V_(ub)|=(2.95 ± 0.31) × 10^(-3) from B → πℓν, where the error is the combined experimental and theoretical uncertainty
    corecore