13,032 research outputs found
Unifying Parsimonious Tree Reconciliation
Evolution is a process that is influenced by various environmental factors,
e.g. the interactions between different species, genes, and biogeographical
properties. Hence, it is interesting to study the combined evolutionary history
of multiple species, their genes, and the environment they live in. A common
approach to address this research problem is to describe each individual
evolution as a phylogenetic tree and construct a tree reconciliation which is
parsimonious with respect to a given event model. Unfortunately, most of the
previous approaches are designed only either for host-parasite systems, for
gene tree/species tree reconciliation, or biogeography. Hence, a method is
desirable, which addresses the general problem of mapping phylogenetic trees
and covering all varieties of coevolving systems, including e.g., predator-prey
and symbiotic relationships. To overcome this gap, we introduce a generalized
cophylogenetic event model considering the combinatorial complete set of local
coevolutionary events. We give a dynamic programming based heuristic for
solving the maximum parsimony reconciliation problem in time O(n^2), for two
phylogenies each with at most n leaves. Furthermore, we present an exact
branch-and-bound algorithm which uses the results from the dynamic programming
heuristic for discarding partial reconciliations. The approach has been
implemented as a Java application which is freely available from
http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Rotating Black Holes in Higher Dimensions with a Cosmological Constant
We present the metric for a rotating black hole with a cosmological constant
and with arbitrary angular momenta in all higher dimensions. The metric is
given in both Kerr-Schild and Boyer-Lindquist form. In the Euclidean-signature
case, we also obtain smooth compact Einstein spaces on associated S^{D-2}
bundles over S^2, infinitely many for each odd D\ge 5. Applications to string
theory and M-theory are indicated.Comment: 8 pages, Latex. Short version, with more compact notation, of
hep-th/0404008. To appear in Phys. Rev. Let
Proof of the Generalized Second Law for Quasistationary Semiclassical Black Holes
A simple direct explicit proof of the generalized second law of black hole
thermodynamics is given for a quasistationary semiclassical black hole.Comment: 12 pages, LaTeX, report Alberta-Thy-10-93 (revision of paper in
response to Phys. Rev. Lett. referees' comments, which suffered a series of
long delays
Entropy bounds for charged and rotating systems
It was shown in a previous work that, for systems in which the entropy is an
extensive function of the energy and volume, the Bekenstein and the holographic
entropy bounds predict new results. In this paper, we go further and derive
improved upper bounds to the entropy of {\it extensive} charged and rotating
systems. Furthermore, it is shown that for charged and rotating systems
(including non-extensive ones), the total energy that appear in both the
Bekenstein entropy bound (BEB) and the causal entropy bound (CEB) can be
replaced by the {\it internal} energy of the system. In addition, we propose
possible corrections to the BEB and the CEB.Comment: 12 pages, revte
Entanglement, recoherence and information flow in an accelerated detector - quantum field system: Implications for black hole information issue
We study an exactly solvable model where an uniformly accelerated detector is
linearly coupled to a massless scalar field initially in the Minkowski vacuum.
Using the exact correlation functions we show that as soon as the coupling is
switched on one can see information flowing from the detector to the field and
propagating with the radiation into null infinity. By expressing the reduced
density matrix of the detector in terms of the two-point functions, we
calculate the purity function in the detector and study the evolution of
quantum entanglement between the detector and the field. Only in the ultraweak
coupling regime could some degree of recoherence in the detector appear at late
times, but never in full restoration. We explicitly show that under the most
general conditions the detector never recovers its quantum coherence and the
entanglement between the detector and the field remains large at late times. To
the extent this model can be used as an analog to the system of a black hole
interacting with a quantum field, our result seems to suggest in the prevalent
non-Markovian regime, assuming unitarity for the combined system, that black
hole information is not lost but transferred to the quantum field degrees of
freedom. Our combined system will evolve into a highly entangled state between
a remnant of large area (in Bekenstein's black hole atom analog) without any
information of its initial state, and the quantum field, now imbued with
complex information content not-so-easily retrievable by a local observer.Comment: 16 pages, 12 figures; minor change
Spinning Down a Black Hole With Scalar Fields
We study the evolution of a Kerr black hole emitting scalar radiation via the
Hawking process. We show that the rate at which mass and angular momentum are
lost by the black hole leads to a final evolutionary state with nonzero angular
momentum, namely .Comment: 4 pages (including 3 postscript figures), Revtex, uses epsf.tex,
twocolumn.sty and header.sty (included). Submitted to Physical Review Letter
Do Evaporating Black Holes Form Photospheres?
Several authors, most notably Heckler, have claimed that the observable
Hawking emission from a microscopic black hole is significantly modified by the
formation of a photosphere around the black hole due to QED or QCD interactions
between the emitted particles. In this paper we analyze these claims and
identify a number of physical and geometrical effects which invalidate these
scenarios. We point out two key problems. First, the interacting particles must
be causally connected to interact, and this condition is satisfied by only a
small fraction of the emitted particles close to the black hole. Second, a
scattered particle requires a distance ~ E/m_e^2 for completing each
bremsstrahlung interaction, with the consequence that it is improbable for
there to be more than one complete bremsstrahlung interaction per particle near
the black hole. These two effects have not been included in previous analyses.
We conclude that the emitted particles do not interact sufficiently to form a
QED photosphere. Similar arguments apply in the QCD case and prevent a QCD
photosphere (chromosphere) from developing when the black hole temperature is
much greater than Lambda_QCD, the threshold for QCD particle emission.
Additional QCD phenomenological arguments rule out the development of a
chromosphere around black hole temperatures of order Lambda_QCD. In all cases,
the observational signatures of a cosmic or Galactic halo background of
primordial black holes or an individual black hole remain essentially those of
the standard Hawking model, with little change to the detection probability. We
also consider the possibility, as proposed by Belyanin et al. and D. Cline et
al., that plasma interactions between the emitted particles form a photosphere,
and we conclude that this scenario too is not supported.Comment: version published in Phys Rev D 78, 064043; 25 pages, 3 figures;
includes discussion on extending our analysis to TeV-scale,
higher-dimensional black hole
Green function Retrieval and Time-reversal in a Disordered World
We apply the theory of multiple wave scattering to two contemporary, related
topics: imaging with diffuse correlations and stability of time-reversal of
diffuse waves, using equipartition, coherent backscattering and frequency
speckles as fundamental concepts.Comment: 1 figur
Nonthermal radiation of rotating black holes
Nonthermal radiation of a Kerr black hole is considered as tunneling of
created particles through an effective Dirac gap. In the leading semiclassical
approximation this approach is applicable to bosons as well. Our semiclassical
results for photons and gravitons do not contradict those obtained previously.
For neutrinos the result of our accurate quantum mechanical calculation is
about two times larger than the previous one.Comment: 10 pages, 2 figures; 2 references added, few typos correcte
No-Bang Quantum State of the Cosmos
A quantum state of the entire cosmos (universe or multiverse) is proposed
which is the equal mixture of the Giddings-Marolf states that are
asymptotically single de Sitter spacetimes in both past and future and are
regular on the throat or neck of minimal three-volume. That is, states are
excluded that have a big bang or big crunch or which split into multiple
asymptotic de Sitter spacetimes. (For simplicity, transitions between different
values of the cosmological constant are assumed not to occur, though different
positive values are allowed.) The entropy of this mixed state appears to be of
the order of the three-fourths power of the Bekenstein-Hawking A/4 entropy of
de Sitter spacetime. Most of the component pure states do not have rapid
inflation, but when an inflaton is present and the states are weighted by the
volume at the end of inflation, a much smaller number of states may dominate
and give a large amount of inflation and hence may agree with observations.Comment: 18 pages, LaTeX, updated with a few new qualifications and reference
- …
