51 research outputs found

    Anterior shear strength of the porcine lumbar spine after laminectomy and partial facetectomy

    Get PDF
    Degenerative lumbar spinal stenosis is the most common reason for lumbar surgery in patients in the age of 65 years and older. The standard surgical management is decompression of the spinal canal by laminectomy and partial facetectomy. The effect of this procedure on the shear strength of the spine has not yet been investigated in vitro. In the present study we determined the ultimate shear force to failure, the displacement and the shear stiffness after performing a laminectomy and a partial facetectomy. Eight lumbar spines of domestic pigs (7 months old) were sectioned to obtain eight L2–L3 and eight L4–L5 motion segments. All segments were loaded with a compression force of 1,600 N. In half of the 16 motion segments a laminectomy and a 50% partial facetectomy were applied. The median ultimate shear force to failure with laminectomy and partial facetectomy was 1,645 N (range 1,066–1,985) which was significantly smaller (p = 0.012) than the ultimate shear force to failure of the control segments (median 2,113, range 1,338–2,659). The median shear stiffness was 197.4 N/mm (range 119.2–216.7) with laminectomy and partial facetectomy which was significantly (p = 0.036) smaller than the stiffness of the control specimens (median 216.5, 188.1–250.2). It was concluded that laminectomy and partial facetectomy resulted in 22% reduction in ultimate shear force to failure and 9% reduction in shear stiffness. Although relatively small, these effects may explain why patients have an increased risk of sustaining shear force related vertebral fractures after spinal decompression surgery

    Is Spondylolysis Likely to Occur in Normal Spine?

    No full text

    Aortic Root Dilatation in Hypertensive Patients with Left Ventricular Hypertrophy-Application of A New Multivariate Predictive Model. The Life Study

    Get PDF
    Background: Available nomograms to predict aortic root (AoR) diameter for body surface area have limitations. The purpose of this study was to evaluate the use of a new multivariate predictive model to identify AoR dilatation in hypertensive patients with left ventricular hypertrophy. Methods: 943 of 961 patients in the Losartan Intervention For Endpoint reduction in hypertension (LIFE) echocardiographic sub-study had the necessary baseline characteristics and echocardiographic 2D measurements of AoR size to be included. Results: Predicted AoR (Sinus of Valsalva) diameter was 1.519 + (age [years] × 0.010) + (height [cm] × 0.010) – (gender [1 = M, 2 = F] × 0.247), and a measured AoR diameter exceeding the 97.5-percentile of this estimate was considered dilated. Measured AoR diameter was larger in men than in women (3.75 vs. 3.48 cm, p < 0.001) and AoR diameter predicted by the model was larger than predicted by nomogram (3.52 vs. 3.28 cm, p < 0.001). Using the multivariate model to identify patients with AoR dilatation, the prevalence was 13.7% in men and 12.3% in women (p = 0.537). There was consensus of AoR phenotype (normal/dilated) between model and nomogram in 92.8% of the patients. In multivariate logistic regression, AoR dilatation by model definition was predicted by presence of aortic regurgitation (OR 2.67, p < 0.001) and SD increase in age (OR 0.75, p = 0.023), pulse pressure (OR 0.64, p < 0.001), left ventricular mass index (OR 1.36, p = 0.08) and stroke volume (OR 1.45, p = 0.002), but not by body weight. Conclusions: Using the proposed model the prevalence of AoR dilatation was equal in men and women and the model seems to address the effects of gender, age and body size on AoR size.publishedVersio
    corecore