525 research outputs found

    Using Semantic Waves to Analyse the Effectiveness of Unplugged Computing Activities

    Get PDF
    We apply the notion of ‘semantic waves’ from Legitimation Code Theory (LCT), a powerful educational framework, to Computer Science Education. We consider two case studies exploring how a simple analysis can help improve learning activities. The case studies focus on unplugged activities used in the context of both teaching school students and teacher continuing professional development. We used a simple method based on LCT to analyse the activities in terms of their ‘semantic profiles’: changes in the context-dependence and complexity of the knowledge being taught.This led to improvements to the activities. We argue that ‘semantic waves’, or moves back and forth between concrete/simpler and abstract/complex knowledge, help show ways that an unplugged activity might be effective or not, and how small changes to the activities can make a difference in potentially offering a more fruitful learning experienc

    Route previewing results in altered gaze behaviour, increased self-confidence and improved stepping safety in both young and older adults during adaptive locomotion

    Get PDF
    Older adults with falls-risk tend to look away prematurely from targets for safe foot placement to view future hazards; behaviour associated with increased anxiety and stepping inaccuracies. We aimed to determine the effectiveness of route-previewing in reducing anxiety and optimizing gaze behaviour and stepping performance of young and older adults. Nine younger and nine older adults completed six walks with three task complexities over two sessions. Each trial used either an isolated stepping target, or a target followed by either one or two obstacles. Participants with eyes closed, on hearing a signal, opened their eyes and initiated walking (go trials) or stood previewing the route for 10s before starting (preview trials). Kinematic data were collected using a Vicon motion analysis system. Gaze behaviour was recorded using a Dikablis eye tracker. On average, both older and younger adults fixated the target for significantly longer during walking when they had previewed the route than when they had not. Self-confidence scores were also significantly higher following ‘preview trials’ than ‘go trials’. Stepping performance significantly improved following route previewing (reduced Medial lateral foot placement variability for both groups and reduced Anterior/posterior foot placement error in older adults only). These findings implicate route previewing as a potential intervention to increase self-confidence and reduce the risk of tripping in older adults

    Geodesics in a quasispherical spacetime: A case of gravitational repulsion

    Full text link
    Geodesics are studied in one of the Weyl metrics, referred to as the M--Q solution. First, arguments are provided, supporting our belief that this space--time is the more suitable (among the known solutions of the Weyl family) for discussing the properties of strong quasi--spherical gravitational fields. Then, the behaviour of geodesics is compared with the spherically symmetric situation, bringing out the sensitivity of the trajectories to deviations from spherical symmetry. Particular attention deserves the change of sign in proper radial acceleration of test particles moving radially along symmetry axis, close to the r=2Mr=2M surface, and related to the quadrupole moment of the source.Comment: 30 pages late

    A source of a quasi--spherical space--time: The case for the M--Q solution

    Full text link
    We present a physically reasonable source for an static, axially--symmetric solution to the Einstein equations. Arguments are provided, supporting our belief that the exterior space--time produced by such source, describing a quadrupole correction to the Schwarzschild metric, is particularly suitable (among known solutions of the Weyl family) for discussing the properties of quasi--spherical gravitational fields.Comment: 34 pages, 9 figures. To appear in GR

    Optimization of the deposition conditions and structural characterization of Y1Ba2Cu3O(7-x) thin superconducting films

    Get PDF
    Two series of Y1Ba2Cu3O(z) thin films deposited on (001) LaAl03 single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O2) and substrate temperature of the deposition process Th, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j(sub c) and T(sub c) exhibited T(sub c) greater than or equal to 91 K and j(sub c) greater than or equal to 4 x 106 A/sq cm, at 77 K. Close correlations between the structural quality of the film, the growth parameters (p(O2), T(sub h)) and j(sub c) and T(sub c) have been found

    The song of the dunes as a self-synchronized instrument

    Full text link
    Since Marco Polo (1) it has been known that some sand dunes have the peculiar ability of emitting a loud sound with a well defined frequency, sometimes for several minutes. The origin of this sustained sound has remained mysterious, partly because of its rarity in nature (2). It has been recognized that the sound is not due to the air flow around the dunes but to the motion of an avalanche (3), and not to an acoustic excitation of the grains but to their relative motion (4-7). By comparing several singing dunes and two controlled experiments, one in the laboratory and one in the field, we here demonstrate that the frequency of the sound is the frequency of the relative motion of the sand grains. The sound is produced because some moving grains synchronize their motions. The existence of a velocity threshold in both experiments further shows that this synchronization comes from an acoustic resonance within the flowing layer: if the layer is large enough it creates a resonance cavity in which grains self-synchronize.Comment: minor changes, essentially more references

    Onsager coefficients of a Brownian Carnot cycle

    Full text link
    We study a Brownian Carnot cycle introduced by T. Schmiedl and U. Seifert [Europhys. Lett. \textbf{81}, 20003 (2008)] from a viewpoint of the linear irreversible thermodynamics. By considering the entropy production rate of this cycle, we can determine thermodynamic forces and fluxes of the cycle and calculate the Onsager coefficients for general protocols, that is, arbitrary schedules to change the potential confining the Brownian particle. We show that these Onsager coefficients contain the information of the protocol shape and they satisfy the tight-coupling condition irrespective of whatever protocol shape we choose. These properties may give an explanation why the Curzon-Ahlborn efficiency often appears in the finite-time heat engines

    A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    Full text link
    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito Koumoto and Takao Mori, Springer Series in Materials Science Volume 182 (2013

    Superposition of Weyl solutions: The equilibrium forces

    Full text link
    Solutions to the Einstein equation that represent the superposition of static isolated bodies with axially symmetry are presented. The equations nonlinearity yields singular structures (strut and membranes) to equilibrate the bodies. The force on the strut like singularities is computed for a variety of situations. The superposition of a ring and a particle is studied in some detailComment: 31 pages, 7 figures, psbox macro. Submitted to Classical and Quantum Gravit

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR
    • …
    corecore