3,871 research outputs found

    Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus

    Get PDF
    A basic problem in genetic counseling of families with Duchenne/Becker muscular dystrophy (DMD/BMD) concerns the carrier status of female relatives of an affected male. In about 60% of these patients, deletions of one or more exons of the dystrophin gene can be identified. These deletions preferentially include exon 45, which can be detected by multiplex polymerase chain reaction (PCR) and Southern blot analysis of genomic cosmid clones that map to this critical region. As a new approach for definitive carrier detection, we have performed chromosomal in situ suppression (CISS) hybridization with these cosmid clones in female relatives of four unrelated patients. In normal females, most metaphases showed signals on both×chromosomes, whereas only one×chromosome was labeled in carriers. Our results demonstrate that CISS hybridization can define the carrier status in female relatives of DMD patients exhibiting a deletion in the dystrophin gene

    Positional changes of pericentromeric heterochromatin and nucleoli in postmitotic Purkinje cells during murine cerebellum development

    Get PDF
    Previous studies revealed changes of pericentromeric heterochromatin arrangements in postmitotic Purkinje cells (PCs) during postnatal development in the mouse cerebellum (Manuelidis, 1985; Martou and De Boni, 2000). Here, we performed vibratome sections of mouse cerebellum (vermis) at P0 (day of birth), at various stages of the postnatal development (P2-P21), as well as in very young (P28) and 17-months-old adults. FISH was carried out on these sections with major mouse satellite DNA in combination with immunostaining of the nucleolar protein B23 (nucleophosmin). Laser confocal microscopy, 3D reconstructions and quantitative image analysis were employed to describe changes in the number and topology of chromocenters and nucleoli. At all stages of postnatal PC development heterochromatin clusters were typically associated either with nucleoli or with the nuclear periphery, while non-associated clusters were rare (<1% at P0 to P21 and about 3% in adult stages). At P0, about 2-4 nucleoli and 7-8 pericentromeric heterochromatin clusters were variably located within PC nuclei. The relative volume of heterochromatin clusters associated with the nucleoli (about 50%) was roughly equal to the volume of clusters associated with the nuclear periphery. Positional changes of both nucleoli and centromeres towards the nuclear center occurred between P0 and P6. At P6 the average number of chromocenters per PC nucleus had decreased to about five. In agreement with previous studies, one or occasionally two nucleoli were noted at the nuclear center surrounded by major perinucleolar heterochromatin clusters. The relative volume of these perinucleolar clusters increased to about 84%, while the volume of clusters in the nuclear periphery decreased to about 15%. At subsequent postnatal stages, the arrangement of most pericentromeric heterochromatin around a central nucleolus was maintained. In adult animals, however, we observed a partial redistribution of heterochromatin towards the nuclear periphery. The average total number of pericentromeric heterochromatin signals increased again to about ten. The volume of heterochromatin associated with the nuclear periphery roughly doubled (30%), while the volume of the perinucleolar heterochromatin decreased correspondingly. Copyright (C) 2004 S. Karger AG, Basel

    Towards many colors in FISH on 3D-preserved interphase nuclei

    Get PDF
    The article reviews the existing methods of multicolor FISH on nuclear targets, first of all, interphase chromosomes. FISH proper and image acquisition are considered as two related components of a single process. We discuss (1) M-FISH (combinatorial labeling + deconvolution + widefield microscopy); (2) multicolor labeling + SIM (structured illumination microscopy); (3) the standard approach to multicolor FISH + CLSM (confocal laser scanning microscopy; one fluorochrome - one color channel); (4) combinatorial labeling + CLSM; (5) non-combinatorial labeling + CLSM + linear unmixing. Two related issues, deconvolution of images acquired with CLSM and correction of data for chromatic Z-shift, are also discussed. All methods are illustrated with practical examples. Finally, several rules of thumb helping to choose an optimal labeling + microscopy combination for the planned experiment are suggested. Copyright (c) 2006 S. Karger AG, Basel

    Leadership and Fairness: The State of the Art

    Get PDF
    Research in leadership effectiveness has paid less to the role of leader fairness than probably it should have. More recently, this has started to change. To capture this development, we review the empirical literature in leadership and fairness to define the field of leadership and fairness, to assess the state of the art, and to identify a research agenda for future efforts in the field. The review shows that leader distributive, procedural, and especially interactional fairness are positively associated with criteria of leadership effectiveness. More scarce and scattered evidence also suggests that fairness considerations help explain the effectiveness of other aspects of leadership, and that leader fairness and other aspects of leadership, or the leadership context, may interact in predicting leadership effectiveness. We conclude that future research should especially focus on interaction effects of leader fairness and other aspects of leadership, and on the processes mediating these effects.Leadership effectiveness;Fairness

    Time scale of entropic segregation of flexible polymers in confinement: Implications for chromosome segregation in filamentous bacteria

    Full text link
    We report molecular dynamics simulations of the segregation of two overlapping chains in cylindrical confinement. We find that the entropic repulsion between the chains can be sufficiently strong to cause segregation on a time scale that is short compared to the one for diffusion. This result implies that entropic driving forces are sufficiently strong to cause rapid bacterial chromosome segregation.Comment: Minor changes. Added some references, corrected the labels in figure 6 and reformatted in two columns. Also added reference to published version in PR

    Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments

    Get PDF
    Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed

    Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries

    Get PDF
    A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported. DNA inserts from a single chromosomal library are labeled with biotin and partially preannealed with a titrated amount of total human genomic DNA prior to hybridization with cellular or chromosomal preparations. The cross-hybridization of repetitive sequences to nontargeted chromosomes can be markedly suppressed under appropriate preannealing conditions. The remaining single-stranded DNA is hybridized to specimens of interest and detected with fluorescent or enzymelabeled avidin conjugates following post-hybridization washes. DNA inserts from recombinant libraries for chromosomes 1, 4, 7, 8, 13, 14, 18, 20, 21, 22, and X were assessed for their ability to decorate specifically their cognate chromosome; most libraries proved to be highly specific. Quantitative densitometric analyses indicated that the ratio of specific to nonspecific hybridization signal under optimal preannealing conditions was at least 8:1. Interphase nuclei showed a cohesive territorial organization of chromosomal domains, and laserscanning confocal fluorescence microscopy was used to aid the 3-D visualization of these domains. This method should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells
    corecore