4,596 research outputs found
Supporting ethnographic studies of ubiquitous computing in the wild
Ethnography has become a staple feature of IT research over the last twenty years, shaping our understanding of the social character of computing systems and informing their design in a wide variety of settings. The emergence of ubiquitous computing raises new challenges for ethnography however, distributing interaction across a burgeoning array of small, mobile devices and online environments which exploit invisible sensing systems. Understanding interaction requires ethnographers to reconcile interactions that are, for example, distributed across devices on the street with online interactions in order to assemble coherent understandings of the social character and purchase of ubiquitous computing systems. We draw upon four recent studies to show how ethnographers are replaying system recordings of interaction alongside existing resources such as video recordings to do this and identify key challenges that need to be met to support ethnographic study of ubiquitous computing in the wild
Globular Clusters in NGC 1275
We present the results of a deep photometric study of the outer halo of NGC
1275, the highly active cD galaxy at the center of the Perseus cluster. We find
a modest excess of faint () starlike objects in its halo, indicating
a population of old-halo globular clusters. However, the total estimated
cluster population corresponds to a specific frequency of ,
no larger than that of normal giant ellipticals and three times lower than that
of other central cD galaxies such as M87. We discuss several ideas for the
origin of this galaxy. Our results reinforce the view that high (ie:
highly efficient globular cluster formation) is not associated with cooling
flows, or with recent starburst or merger phenomena.Comment: 25 pages, latex, postscript figures, tarred, Unix compressed,
postscript version of paper and figures available at
http://www.physics.mcmaster.ca/Grads/DKaisler/office.htm
Solar energy conversion
If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience
Carbon Stars and other Luminous Stellar Populations in M33
The M33 galaxy is a nearby, relatively metal-poor, late-type spiral. Its
proximity and almost face-on inclination means that it projects over a large
area on the sky, making it an ideal candidate for wide-field CCD mosaic
imaging. Photometry was obtained for more than 10^6 stars covering a 74' x 56'
field centered on M33. Main sequence (MS), supergiant branch (SGB), red giant
branch (RGB) and asymptotic giant branch (AGB) populations are identified and
classified based on broad-band V and I photometry. Narrow-band filters are used
to measure spectral features allowing the AGB population to be further divided
into C and M-star types. The galactic structure of M33 is examined using star
counts, colour-colour and colour-magnitude selected stellar populations. We use
the C to M-star ratio to investigate the metallicity gradient in the disk of
M33. The C/M-star ratio is found to increase and then flatten with increasing
galactocentric radius in agreement with viscous disk formation models. The
C-star luminosity function is found to be similar to M31 and the SMC,
suggesting that C-stars should be useful distance indicators. The ``spectacular
arcs of carbon stars'' in M33 postulated recently by Block et al. (2004) are
found in our work to be simply an extension of M33's disk.Comment: 20 pages, 20 figures. Accepted for publication in The Astronomical
Journa
Exoplanet telescope diffracted light minimized: the pinwheel-pupil solution
Terrestrial exoplanets shine in light reflected from a parent star. Optical spectra are required to provide evidence of a life-supporting environment. Exoplanets are very faint and their optical spectra are contaminated by the spectrum of the parent star. High angular resolution provided by large apertures is needed to distinguish between the spectrum of the exoplanet and its star. Today, large aperture telescopes use segmented primary mirrors that employ close-packed hexagonal segments. The telescope primary mirror is periodically discontinuous with straight lines. These discontinuities scatter unwanted radiation from the much brighter parent star across the field of view to obscure the light from the very faint terrestrial exoplanet. These discontinuities, which mimic a diffraction grating, result in a non-uniform distribution of background light across the image plane. This non-uniformity masks or hides exoplanets from view, to reduce the number of exoplanets that can be observed with a large aperture telescope or to reduce the quality of spectra and thus lead to misinterpretation of data. Here we introduce the concept of the pinwheel pupil whose unique diffraction pattern significantly reduces the non-uniform distribution of background radiation. Diffraction patterns from pinwheel pupils are compared to the monolithic filled aperture, the classical Cassegrain, the 60-degree symmetry of the hexagonal segments (JWST, E-ELT, etc.). Diffraction “spikes” are reduced by at least 105. We discuss the “pinwheel pupil” advantages to spectroscopy, image processing, and observatory operations. We show that, segment fabrication of curved-sided mirrors is not more difficult than fabrication of hexagonal mirror segments. . This is the report of quantitative study of Fraunhofer (far field) diffraction patterns produced by three different topologies or architectures of mirror segmentation, when illuminated by a plane wave of monochromatic white-light. A plot, in angular units of the intensity as a function of azimuth, Phi_f , within annular rings at different FOVs, centered on the system axis of the diffraction pattern will be presented. The advantages of the segmented pinwheel pupil is discussed
- …
