449 research outputs found
Measurement of Linear Stark Interference in 199Hg
We present measurements of Stark interference in the 6
6 transition in Hg, a process whereby a static electric field
mixes magnetic dipole and electric quadrupole couplings into an electric
dipole transition, leading to -linear energy shifts similar to those
produced by a permanent atomic electric dipole moment (EDM). The measured
interference amplitude, = = (5.8 1.5) (kV/cm), agrees with relativistic, many-body predictions and
confirms that earlier central-field estimates are a factor of 10 too large.
More importantly, this study validates the capability of the Hg EDM
search apparatus to resolve non-trivial, controlled, and sub-nHz Larmor
frequency shifts with EDM-like characteristics.Comment: 4 pages, 4 figures, 1 table; revised in response to reviewer comment
Two-dimensional Nanolithography Using Atom Interferometry
We propose a novel scheme for the lithography of arbitrary, two-dimensional
nanostructures via matter-wave interference. The required quantum control is
provided by a pi/2-pi-pi/2 atom interferometer with an integrated atom lens
system. The lens system is developed such that it allows simultaneous control
over atomic wave-packet spatial extent, trajectory, and phase signature. We
demonstrate arbitrary pattern formations with two-dimensional 87Rb wavepackets
through numerical simulations of the scheme in a practical parameter space.
Prospects for experimental realizations of the lithography scheme are also
discussed.Comment: 36 pages, 4 figure
A quantitative study of spin noise spectroscopy in a classical gas of K atoms
We present a general derivation of the electron spin noise power spectrum in
alkali gases as measured by optical Faraday rotation, which applies to both
classical gases at high temperatures as well as ultracold quantum gases. We
show that the spin-noise power spectrum is determined by an electron spin-spin
correlation function, and we find that measurements of the spin-noise power
spectra for a classical gas of K atoms are in good agreement with the
predicted values. Experimental and theoretical spin noise spectra are directly
and quantitatively compared in both longitudinal and transverse magnetic fields
up to the high magnetic field regime (where Zeeman energies exceed the
intrinsic hyperfine energy splitting of the K ground state)
Weak force detection using a double Bose-Einstein condensate
A Bose-Einstein condensate may be used to make precise measurements of weak
forces, utilizing the macroscopic occupation of a single quantum state. We
present a scheme which uses a condensate in a double well potential to do this.
The required initial state of the condensate is discussed, and the limitations
on the sensitivity due to atom collisions and external coupling are analyzed.Comment: 12 pages, 2 figures, Eq.(41) has been correcte
An Improved Experimental Limit on the Electric Dipole Moment of the Neutron
An experimental search for an electric-dipole moment (EDM) of the neutron has
been carried out at the Institut Laue-Langevin (ILL), Grenoble. Spurious
signals from magnetic-field fluctuations were reduced to insignificance by the
use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties,
including geometric-phase-induced false EDMs, have been carefully studied. Two
independent approaches to the analysis have been adopted. The overall results
may be interpreted as an upper limit on the absolute value of the neutron EDM
of |d_n| < 2.9 x 10^{-26} e cm (90% CL).Comment: 5 pages, 2 figures. The published PRL is slightly more terse (e.g. no
section headings) than this version, due to space constraints. Note a small
correction-to-a-correction led to an adjustment of the final limit from 3.0
to 2.9 E-26 e.cm compared to the first version of this preprin
Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms
We propose a set of conventional Bethe Ansatz equations and a corresponding
expression for the eigenvalues of the transfer matrix for the open spin-1/2 XXZ
quantum spin chain with nondiagonal boundary terms, provided that the boundary
parameters obey a certain linear relation.Comment: 11 pages, LaTeX; amssymb, amsmath, no figures; v2: citation adde
Many-body quantum dynamics of polarisation squeezing in optical fibre
We report new experiments that test quantum dynamical predictions of
polarization squeezing for ultrashort photonic pulses in a birefringent fibre,
including all relevant dissipative effects. This exponentially complex
many-body problem is solved by means of a stochastic phase-space method. The
squeezing is calculated and compared to experimental data, resulting in
excellent quantitative agreement. From the simulations, we identify the
physical limits to quantum noise reduction in optical fibres. The research
represents a significant experimental test of first-principles time-domain
quantum dynamics in a one-dimensional interacting Bose gas coupled to
dissipative reservoirs.Comment: 4 pages, 4 figure
Quantum dynamics in ultra-cold atomic physics
We review recent developments in the theory of quantum dynamics in ultra-cold
atomic physics, including exact techniques, but focusing on methods based on
phase-space mappings that are appli- cable when the complexity becomes
exponentially large. These phase-space representations include the truncated
Wigner, positive-P and general Gaussian operator representations which can
treat both bosons and fermions. These phase-space methods include both
traditional approaches using a phase-space of classical dimension, and more
recent methods that use a non-classical phase-space of increased
dimensionality. Examples used include quantum EPR entanglement of a four-mode
BEC, time-reversal tests of dephasing in single-mode traps, BEC quantum
collisions with up to 106 modes and 105 interacting particles, quantum
interferometry in a multi-mode trap with nonlinear absorp- tion, and the theory
of quantum entropy in phase-space. We also treat the approach of variational
optimization of the sampling error, giving an elementary example of a nonlinear
oscillator
Quantum many-body simulations using Gaussian phase-space representations
Phase-space representations are of increasing importance as a viable and
successful means to study exponentially complex quantum many-body systems from
first principles. This review traces the background of these methods, starting
from the early work of Wigner, Glauber and Sudarshan. We focus on modern
phase-space approaches using non-classical phase-space representations. These
lead to the Gaussian representation, which unifies bosonic and fermionic
phase-space. Examples treated include quantum solitons in optical fibers,
colliding Bose-Einstein condensates, and strongly correlated fermions on
lattices.Comment: Short Review (10 pages); Corrected typo in eq (14); Added a few more
reference
Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses
When ultrafast noncritical cascaded second-harmonic generation of energetic
femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov
waves are formed in the near- to mid-IR. Numerical simulations show that the
few-cycle solitons radiate Cherenkov (dispersive) waves in the
\lambda=2.2-4.5\mic range when pumping at \lambda_1=1.2-1.8\mic. The exact
phase-matching point depends on the soliton wavelength, and we show that a
simple longpass filter can separate the Cherenkov waves from the solitons. The
Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and
the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed
with cascaded nonlinearities could become an efficient source of energetic
near- to mid-IR few-cycle pulses.Comment: Extended version of Nonlinear Optics 2011 contribution
http://www.opticsinfobase.org/abstract.cfm?URI=NLO-2011-NTuA7. Submitted for
Optics Express special issue for NLO conferenc
- …
