16 research outputs found
Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method
In this study, refrigerants R22 and R404A five of their binary mixtures which contain about 0%, 25%, 50%, 75% and 100% mass fractions of R404A were tested. It is investigated experimentally the effects of gas mixture rate, evaporator air inlet temperature (from 24 to 32 °C), evaporator air mass flow rate (from 0.58 to 0.74 kg/s), condenser air inlet temperature (from 22 to 34 °C) and condenser air mass flow rate (from 0.57 to 0.73 kg/s) on the coefficient of performance (COP) and exergetic efficiency values of vapor compression heat-pump systems. To determine the effect of the chosen parameters on the system and optimum working conditions, an experimental design method suggested by Genichi Taguchi was used. In this study, it was observed that the most effective parameters are found to be the condenser air inlet temperature for COP and exergetic efficiency.Heat-pump Gas mixture R404A R22 Taguchi method
Experimental research of dynamic instabilities in the presence of coiled wire inserts on two-phase flow
The aim of this study is to experimentally investigate the effect of the coiled wire insertions on dynamic instabilities and to compare the results with the smooth tube for forced convection boiling. The experiments were conducted in a circular tube, and water was used as the working fluid. Two different pitch ratios (H / D = 2.77 and 5.55) of coiled wire with circular cross-sections were utilised. The constant heat flux boundary condition was applied to the outer side of the test tube, and the constant exit restriction was used at the tube outlet. The mass flow rate changed from 110 to 20 g/s in order to obtain a detailed idea about the density wave and pressure drop oscillations, and the range of the inlet temperature was 15-35°C. The changes in pressure drop, inlet temperature, amplitude, and the period with mass flow rate are presented. For each configuration, it is seen that density wave and pressure drop oscillations occur at all inlet temperatures. Analyses show that the decrease in the mass flow rate and inlet temperature causes the amplitude and the period of the density wave and the pressure drop oscillations to decrease separately. © 2013 Gokhan Omeroglu et al