86 research outputs found

    Genome-Wide Analysis of Histone H3 Lysine9 Modifications in Human Mesenchymal Stem Cell Osteogenic Differentiation

    Get PDF
    Mesenchymal stem cells (MSCs) possess self-renewal and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms such as histone modifications could be critical for determining the fate of stem cells. In this study, full human genome promoter microarrays and expression microarrays were used to explore the roles of histone modifications (H3K9Ac and H3K9Me2) upon the induction of MSC osteogenic differentiation. Our results revealed that the enrichment of H3K9Ac was decreased globally at the gene promoters, whereas the number of promoters enriched with H3K9Me2 was increased evidently upon osteogenic induction. By a combined analysis of data from both ChIP-on-chip and expression microarrays, a number of differentially expressed genes regulated by H3K9Ac and/or H3K9Me2 were identified, implicating their roles in several biological events, such as cell cycle withdraw and cytoskeleton reconstruction that were essential to differentiation process. In addition, our results showed that the vitamin D receptor played a trans-repression role via alternations of H3K9Ac and H3K9Me2 upon MSC osteogenic differentiation. Data from this study suggested that gene activation and silencing controlled by changes of H3K9Ac and H3K9Me2, respectively, were crucial to MSC osteogenic differentiation

    Estrogen regulation of TRPM8 expression in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer.</p> <p>Methods</p> <p>RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques.</p> <p>Results</p> <p>TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E<sub>2</sub>, 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca<sup>2+ </sup>entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER<sup>+</sup>) status of the tumours.</p> <p>Conclusion</p> <p>Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha.</p

    TRPV6 Determines the Effect of Vitamin D3 on Prostate Cancer Cell Growth

    Get PDF
    Despite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1,25-dihydroxyvitamin D3, was shown to be either unpredictable or inefficient in many cases. We have already shown that TRPV6 calcium channel, which is the direct target of 1,25-dihydroxyvitamin D3 receptor, positively controls prostate cancer proliferation and apoptosis resistance (Lehen'kyi et al., Oncogene, 2007). However, how the known 1,25-dihydroxyvitamin D3 antiproliferative effects may be compatible with the upregulation of pro-oncogenic TRPV6 channel remains a mystery. Here we demonstrate that in low steroid conditions 1,25-dihydroxyvitamin D3 upregulates the expression of TRPV6, enchances the proliferation by increasing the number of cells entering into S-phase. We show that these pro-proliferative effects of 1,25-dihydroxyvitamin D3 are directly mediated via the overexpression of TRPV6 channel which increases calcium uptake into LNCaP cells. The apoptosis resistance of androgen-dependent LNCaP cells conferred by TRPV6 channel is drastically inversed when 1,25-dihydroxyvitamin D3 effects were combined with the successful TRPV6 knockdown. In addition, the use of androgen-deficient DU-145 and androgen-insensitive LNCaP C4-2 cell lines allowed to suggest that the ability of 1,25-dihydroxyvitamin D3 to induce the expression of TRPV6 channel is a crucial determinant of the success or failure of 1,25-dihydroxyvitamin D3-based therapies

    Memory B Cell Antibodies to HIV-1 gp140 Cloned from Individuals Infected with Clade A and B Viruses

    Get PDF
    Understanding the antibody response to HIV-1 in humans that show broad neutralizing serologic activity is a crucial step in trying to reproduce such responses by vaccination. Investigating antibodies with cross clade reactivity is particularly important as these antibodies may target conserved epitopes on the HIV envelope gp160 protein. To this end we have used a clade B YU-2 gp140 trimeric antigen and single-cell antibody cloning methods to obtain 189 new anti-gp140 antibodies representing 51 independent B cell clones from the IgG memory B cells of 3 patients infected with HIV-1 clade A or B viruses and exhibiting broad neutralizing serologic activity. Our results support previous findings showing a diverse antibody response to HIV gp140 envelope protein, characterized by differentially expanded B-cell clones producing highly hypermutated antibodies with heterogenous gp140-specificity and neutralizing activity. In addition to their high-affinity binding to the HIV spike, the vast majority of the new anti-gp140 antibodies are also polyreactive. Although none of the new antibodies are as broad or potent as VRC01 or PG9, two clonally-related antibodies isolated from a clade A HIV-1 infected donor, directed against the gp120 variable loop 3, rank in the top 5% of the neutralizers identified in our large collection of 185 unique gp140-specific antibodies in terms of breadth and potency

    Amides of ?-hydrohexafluoroisobutyric acid

    No full text

    An inherent role of microtubule network in the action of nuclear receptor

    No full text
    Estrogen receptor α (ERα) functions as both a transcription factor and a mediator of rapid estrogen signaling. Recent studies have shown a role for ERα-interacting membranous and cytosolic proteins in ERα action, but our understanding of the role of the microtubule network in the modulation of ERα signaling remains unclear. Here we found that endogenous ERα associates with microtubules through the microtubule-binding protein hematopoietic PBX-interaction protein (HPIP). Biochemical and RNA-interference studies demonstrated that HPIP influences ERα-dependent rapid estrogen signaling by acting as a scaffold protein and recruits Src kinase and the p85 subunit of phosphatidylinositol 3-kinase to a complex with ERα, which in turn stimulates AKT and MAPK. We also found that ERα interacts with β-tubulin through HPIP. Destabilization of microtubules activated ERα signaling, whereas stabilization of microtubules repressed ERα transcriptional activity in a HPIP-dependent manner. These findings revealed a role for HPIP–microtubule complex in regulating 17β-estradiol–ERα responses in mammalian cells and discovered an inherent role of microtubules in the action of nuclear receptor

    Analysis of Transcription Complexes and Effects of Ligands by Microelectrospray Ionization Mass Spectrometry

    No full text
    The human vitamin D receptor (VDR) and retinoid X receptor-alpha (RXRalpha) modulate gene activity by forming homodimeric or heterodimeric complexes with specific DNA sequences and interaction with other elements of the transcriptional apparatus in the presence of their known endogenous ligands 1alpha,25-dihydroxyvitamin D3 (1, 25-[OH]2D3) and 9-cis-retinoic acid (9-c-RA). We used rapid buffer exchange gel filtration in conjunction with microelectrospray ionization mass spectrometry (microESI-MS) to study the binding of these receptors to the osteopontin vitamin D response element (OP VDRE). In the absence of DNA, both VDR and RXRalpha existed primarily as monomers, but in the presence of OP VDRE, homodimeric RXRalpha and heterodimeric RXRalpha-VDR complexes were shown to bind OP VDRE. Addition of 9-c-RA increased RXRalpha homodimer-OP VDRE complexes, and addition of 1,25-(OH) 2D3 resulted in formation of 1, 25-(OH)2D 3-VDR-RXRalpha-OP VDRE complexes. Addition of low-affinity binding ligands had no detectable effect on the VDR-RXRalpha-OP VDRE transcription complex. These results demonstrate the utility of microESI-MS in analyzing multimeric, high-molecular-weight protein-protein and protein-DNA complexes, and the effects of ligands on these transcriptional complexes
    • …
    corecore