126 research outputs found

    Pathological regional blood flow in opiate-dependent patients during withdrawal: A HMPAO-SPECT study

    Get PDF
    The aims of the present study were to investigate regional cerebral blood flow (rCBF) in heroin-dependent patients during withdrawal and to assess the relation between these changes and duration of heroin consumption and withdrawal data. The rCBF was measured using brain SPECT with Tc-99m-HMPAO in 16 heroin-dependent patients during heroin withdrawal. Thirteen patients received levomethadone at the time of the SPECT scans. The images were analyzed both visually and quantitatively, a total of 21 hypoperfused brain regions were observed in 11 of the 16 patients. The temporal lobes were the most affected area, hypoperfusions of the right and left temporal lobe were observed in 5 and 5 patients, respectively. Three of the patients had a hypoperfusion of the right frontal lobe, 2 patients showed perfusion defects in the left frontal lobe, right parietal lobe and left parietal lobe. The results of the quantitative assessments of the rCBF were consistent with the results of the qualitative findings. The stepwise regression analysis showed a significant positive correlation (r = 0.54) between the dose of levomethadone at the time of the SPECT scan and the rCBF of the right parietal lobe. Other significant correlations between clinical data and rCBF were not found. The present results suggest brain perfusion abnormalities during heroin withdrawal in heroin-dependent patients, which are not due to the conditions of withdrawal

    A precision medicine initiative for Alzheimer's disease: the road ahead to biomarker-guided integrative disease modeling

    Get PDF
    After intense scientific exploration and more than a decade of failed trials, Alzheimer’s disease (AD) remains a fatal global epidemic. A traditional research and drug development paradigm continues to target heterogeneous late-stage clinically phenotyped patients with single 'magic bullet' drugs. Here, we propose that it is time for a paradigm shift towards the implementation of precision medicine (PM) for enhanced risk screening, detection, treatment, and prevention of AD. The overarching structure of how PM for AD can be achieved will be provided through the convergence of breakthrough technological advances, including big data science, systems biology, genomic sequencing, blood-based biomarkers, integrated disease modeling and P4 medicine. It is hypothesized that deconstructing AD into multiple genetic and biological subsets existing within this heterogeneous target population will provide an effective PM strategy for treating individual patients with the specific agent(s) that are likely to work best based on the specific individual biological make-up. The Alzheimer’s Precision Medicine Initiative (APMI) is an international collaboration of leading interdisciplinary clinicians and scientists devoted towards the implementation of PM in Neurology, Psychiatry and Neuroscience. It is hypothesized that successful realization of PM in AD and other neurodegenerative diseases will result in breakthrough therapies, such as in oncology, with optimized safety profiles, better responder rates and treatment responses, particularly through biomarker-guided early preclinical disease-stage clinical trials

    Natural Variation in an ABC Transporter Gene Associated with Seed Size Evolution in Tomato Species

    Get PDF
    Seed size is a key determinant of evolutionary fitness in plants and is a trait that often undergoes tremendous changes during crop domestication. Seed size is most often quantitatively inherited, and it has been shown that Sw4.1 is one of the most significant quantitative trait loci (QTLs) underlying the evolution of seed size in the genus Solanum—especially in species related to the cultivated tomato. Using a combination of genetic, developmental, molecular, and transgenic techniques, we have pinpointed the cause of the Sw4.1 QTL to a gene encoding an ABC transporter gene. This gene exerts its control on seed size, not through the maternal plant, but rather via gene expression in the developing zygote. Phenotypic effects of allelic variation at Sw4.1 are manifested early in seed development at stages corresponding to the rapid deposition of starch and lipids into the endospermic cells. Through synteny, we have identified the Arabidopsis Sw4.1 ortholog. Mutagenesis has revealed that this ortholog is associated with seed length variation and fatty acid deposition in seeds, raising the possibility that the ABC transporter may modulate seed size variation in other species. Transcription studies show that the ABC transporter gene is expressed not only in seeds, but also in other tissues (leaves and roots) and, thus, may perform functions in parts of the plants other than developing seeds. Cloning and characterization of the Sw4.1 QTL gives new insight into how plants change seed during evolution and may open future opportunities for modulating seed size in crop plants for human purposes

    Advances in the therapy of Alzheimer's disease: Targeting amyloid beta and tau and perspectives for the future

    Get PDF
    Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD

    Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic.

    Get PDF
    Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in clinical trials have advanced rapidly in key areas of medicine - most notably, oncology and cardiovascular diseases - allowing rapid early detection and supporting the evolution of biomarker-guided, precision-medicine-based targeted therapies. In Alzheimer disease (AD), breakthroughs in biomarker identification and validation include cerebrospinal fluid and PET markers of amyloid-β and tau proteins, which are highly accurate in detecting the presence of AD-associated pathophysiological and neuropathological changes. However, the high cost, insufficient accessibility and/or invasiveness of these assays limit their use as viable first-line tools for detecting patterns of pathophysiology. Therefore, a multistage, tiered approach is needed, prioritizing development of an initial screen to exclude from these tests the high numbers of people with cognitive deficits who do not demonstrate evidence of underlying AD pathophysiology. This Review summarizes the efforts of an international working group that aimed to survey the current landscape of blood-based AD biomarkers and outlines operational steps for an effective academic-industry co-development pathway from identification and assay development to validation for clinical use.I recieved an honorarium from Roche Diagnostics for my participation in the advisory panel meeting leading to this pape

    Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson’s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies

    Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis

    Full text link

    Charge transfer between ZnO crystals and dye layers

    No full text

    Defining the Early Neolithic of the Eastern Rif, Morocco - Spatial distribution, chronological framework and impact of environmental changes

    No full text
    We provide a detailed chronological framework for the Early Neolithic of the Eastern Rif of Morocco. Neolithic innovations such as pottery and domestic plants begin ca. 7.6 ka calBP, at which time plant cultivation is clearly documented for cereals (Triticum monococcum/dicoccum, Triticum aestivum/durum, Hordeum vulgare) and pulses (Lens culinaris, Pisum sativum, Vicia faba). This represents the earliest evidence for Africa as a whole. The Early Neolithic ends ca. 6.3 ka calBP and is marked by the definitive disappearance of Cardium-decorated pottery. The disintegration of the Early Neolithic dates to the interval 6.6-6.0 ka calBP, during which time a gradual desiccation of the Sahara has been observed. In the Eastern Rif of Morocco, Saharan influences become visible after 6.0 ka calBP. These are characterised by the presence of ivory objects and the appearance of comb-impressed pottery with so-called herringbone motives. (C) 2016 Elsevier Ltd and INQUA. All rights reserved
    corecore