1,036 research outputs found

    Solitonic Phase in Manganites

    Full text link
    Whenever a symmetry in the ground state of a system is broken, topological defects will exist. These defects are essential for understanding phase transitions in low dimensional systems[1]. Excitingly in some unique condensed matter systems the defects are also the low energy electric charge excitations. This is the case of skyrmions in quantum Hall ferromagnets[2] and solitons in polymers[3]. Orbital order present in several transitions metal compounds[4-6] could give rise to topological defects. Here we argue that the topological defects in orbital ordered half doped manganites are orbital solitons. Surprisingly, these solitons carry a fractional charge of ±\pme/2, and whenever extra charge is added to the system an array of solitons is formed and an incommensurate solitonic phase occurs. The striking experimental asymmetry in the phase diagram as electrons or holes are added to half doped manganites[7-12], is explained by the energy difference between positive and negative charged solitons. Contrary to existent models that explain coexistence between phases in manganites as an extrinsic effect[13-14], the presence of inhomogeneities is naturally explained by the existence of solitonic phases. The occurrence and relevance of orbital solitons might be a general phenomena in strongly correlated systems.Comment: 10 pages, 5 figures include

    Canted phase in double quantum dots

    Full text link
    We perform a Hartree-Fock calculation in order to describe the ground state of a vertical double quantum dot in the absence of magnetic fields parallel to the growth direction. Intra- and interdot exchange interactions determine the singlet or triplet character of the system as the tunneling is tuned. At finite Zeeman splittings due to in-plane magnetic fields, we observe the continuous quantum phase transition from ferromagnetic to symmetric phase through a canted antiferromagnetic state. The latter is obtained even at zero Zeeman energy for an odd electron number.Comment: 5 pages, 3 figure

    Navier-Stokes transport coefficients of dd-dimensional granular binary mixtures at low density

    Full text link
    The Navier-Stokes transport coefficients for binary mixtures of smooth inelastic hard disks or spheres under gravity are determined from the Boltzmann kinetic theory by application of the Chapman-Enskog method for states near the local homogeneous cooling state. It is shown that the Navier-Stokes transport coefficients are not affected by the presence of gravity. As in the elastic case, the transport coefficients of the mixture verify a set of coupled linear integral equations that are approximately solved by using the leading terms in a Sonine polynomial expansion. The results reported here extend previous calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)] to an arbitrary number of dimensions. To check the accuracy of the Chapman-Enskog results, the inelastic Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo method to evaluate the diffusion and shear viscosity coefficients for hard disks. The comparison shows a good agreement over a wide range of values of the coefficients of restitution and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy

    Equilibration and symmetry breaking in vibrated granular systems

    Get PDF
    The steady states of two vibrated granular gases separated by an adiabatic piston are investigated. The system exhibits a non-equilibrium phase transition with an spontaneous symmetry breaking. Even if the gases at both sides of the piston have the same number of particles and are mechanically identical, their steady volumes and temperatures can be rather different. The transition can be explained by a simple kinetic theory model expressing mechanical equilibrium and the energy balance occurring in the system. The model predictions are in good agreement with molecular dynamics simulation results. The macroscopic description of the steady states is discussed, as well as some physical implications of the symmetry breaking.Comment: 5 figure

    Disorder-Induced First Order Transition and Curie Temperature Lowering in Ferromagnatic Manganites

    Full text link
    We study the effect that size disorder in the cations surrounding manganese ions has on the magnetic properties of manganites. This disorder is mimic with a proper distribution of spatially disordered Manganese energies. Both, the Curie temperature and the order of the transition are strongly affected by disorder. For moderate disorder the Curie temperature decreases linearly with the the variance of the distribution of the manganese site energies, and for a disorder comparable to that present in real materials the transition becomes first order. Our results provide a theoretical framework to understand disorder effects on the magnetic behavior of manganites.Comment: 4 pages, three figures include

    Transport coefficients for dense hard-disk systems

    Get PDF
    A study of the transport coefficients of a system of elastic hard disks, based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for the use in event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results is analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity in this region is obtained, while all other examined transport coefficients show a drop in that density range.Comment: submitted to PR

    Understanding the dynamics of fractional edge states with composite fermions

    Full text link
    Fractional edge states can be viewed as integer edge states of composite fermions. We exploit this to discuss the conductance of the fractional quantized Hall states and the velocity of edge magnetoplasmons.Comment: 3 pages, revte

    Diffusion in a Granular Fluid - Theory

    Full text link
    Many important properties of granular fluids can be represented by a system of hard spheres with inelastic collisions. Traditional methods of nonequilibrium statistical mechanics are effective for analysis and description of the inelastic case as well. This is illustrated here for diffusion of an impurity particle in a fluid undergoing homogeneous cooling. An appropriate scaling of the Liouville equation is described such that the homogeneous cooling ensemble and associated time correlation functions map to those of a stationary state. In this form the familiar methods of linear response can be applied, leading to Green - Kubo and Einstein representations of diffusion in terms of the velocity and mean square displacement correlation functions. These correlation functions are evaluated approximately using a cumulant expansion and from kinetic theory, providing the diffusion coefficient as a function of the density and the restitution coefficients. Comparisons with results from molecular dynamics simulation are given in the following companion paper

    Granular clustering in a hydrodynamic simulation

    Full text link
    We present a numerical simulation of a granular material using hydrodynamic equations. We show that, in the absence of external forces, such a system phase-separates into high density and low density regions. We show that this separation is dependent on the inelasticity of collisions, and comment on the mechanism for this clustering behavior. Our results are compatible with the granular clustering seen in experiments and molecular dynamic simulations of inelastic hard disks.Comment: 4 pages, 5 figure
    corecore