139 research outputs found

    Magnetism in La2O3(Fe1-xMnx)2Se2 tuned by Fe/Mn ratio

    Full text link
    We report the evolution of structural and magnetic properties in La2O3(Fe1-xMnx)2Se2. Heat capacity and bulk magnetization indicate an increased ferromagnetic component of the long-range magnetic order and possible increased degree of frustration. Atomic disorder on Fe(Mn) sites suppresses the temperature of the long-range order whereas intermediate alloys show a rich magnetic phase diagram.Comment: 7 pages, 7 figure

    Phase Diagram of KxFe2-ySe2-zSz and the Suppression of its Superconducting State by an Fe2-Se/S Tetrahedron Distortion

    Full text link
    We report structurally tuned superconductivity in KxFe2-ySe2-zSz (0<=z<=2) phase diagram. Superconducting Tc is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on poorly occupied Fe1 site and the local environment of nearly fully occupied Fe2 site. The decreasing Tc coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2. Our results indicate that the irregularity of Fe2-Se/S tetrahedron is an important controlling parameter that can be used to tune the ground state in the new superconductor family.Comment: 5 pages, 4 figure

    Pressure tuning of structure, superconductivity and novel magnetic order in the Ce-underdoped electron-doped cuprate T'-Pr_1.3-xLa_0.7Ce_xCuO_4 (x = 0.1)

    Full text link
    High-pressure neutron powder diffraction, muon-spin rotation and magnetization studies of the structural, magnetic and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system T'-Pr_1.3-xLa_0.7Ce_xCuO_4 with x = 0.1 are reported. A strong reduction of the lattice constants a and c is observed under pressure. However, no indication of any pressure induced phase transition from T' to T structure is observed up to the maximum applied pressure of p = 11 GPa. Large and non-linear increase of the short-range magnetic order temperature T_so in T'-Pr_1.3-xLa_0.7Ce_xCuO_4 (x = 0.1) was observed under pressure. Simultaneously pressure causes a non-linear decrease of the SC transition temperature T_c. All these experiments establish the short-range magnetic order as an intrinsic and a new competing phase in SC T'-Pr_1.2La_0.7Ce_0.1CuO_4. The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.Comment: 11 pages, 10 figure
    corecore