5 research outputs found

    Influence of late Pleistocene sea-level variations on midocean ridge spacing in faulting simulations and a global analysis of bathymetry

    No full text
    It is established that changes in sea level influence melt production at midocean ridges, but whether changes in melt production influence the pattern of bathymetry flanking midocean ridges has been debated on both theoretical and empirical grounds. To explore the dynamics that may give rise to a sea-level influence on bathymetry, we simulate abyssal hills using a faulting model with periodic variations in melt supply. For 100-ky melt-supply cycles, model results show that faults initiate during periods of amagmatic spreading at half-rates >2.3 cm/y and for 41-ky melt-supply cycles at half-rates >3.8 cm/y. Analysis of bathymetry across 17 midocean ridge regions shows characteristic wavelengths that closely align with the predictions from the faulting model. At intermediate-spreading ridges (half-rates >2.3 cm/y and ≤3.8 cm/y) abyssal hill spacing increases with spreading rate at 0.99 km/(cm/y) or 99 ky (n = 12; 95% CI, 87 to 110 ky), and at fast-spreading ridges (half-rates >3.8 cm/y) spacing increases at 38 ky (n = 5; 95% CI, 29 to 47 ky). Including previously published analyses of abyssal-hill spacing gives a more precise alignment with the primary periods of Pleistocene sea-level variability. Furthermore, analysis of bathymetry from fast-spreading ridges shows a highly statistically significant spectral peak (P < 0.01) at the 1/(41-ky) period of Earth’s variations in axial tilt. Faulting models and observations both support a linkage between glacially induced sea-level change and the fabric of the sea floor over the late Pleistocene

    (Table 2) Age determination from different sediment cores of the Juan de Fuca Ridge

    No full text
    Sedimentation near mid-ocean ridges may differ from pelagic sedimentation due to the influence of the ridges' rough topography on sediment deposition and transport. This study explores whether the near-ridge environment responds to glacial-interglacial changes in climate and oceanography. New benthic d18O, radiocarbon, multi-sensor track, and physical property (sedimentation rates, density, magnetic susceptibility) data for seven cores on the Juan de Fuca Ridge provide multiple records covering the past 700,000 years of oceanographic history of the Northeast Pacific Ocean. Systematic variations in sediment density and coarse fraction correspond to glacial-interglacial cycles identified in benthic d18O, and these observations may provide a framework for mapping the d18O chronostratigraphy via sediment density to other locations on the Juan de Fuca Ridge and beyond. Sedimentation rates generally range from 0.5 to 3 cm/kyr, with background pelagic sedimentation rates close to 1 cm/kyr. Variability in sedimentation rates close to the ridge likely reflects remobilization of sediment caused by the high relief of the ridge bathymetry. Sedimentation patterns primarily reflect divergence of sedimentation rates with distance from the ridge axis and glacial-interglacial variation in sedimentation that may reflect carbonate preservation cycles as well as preferential remobilization of fine material
    corecore