49 research outputs found
Chemotherapy-induced nausea and vomiting in daily clinical practice: a community hospital-based study
Background Chemotherapy-induced nausea and vomiting (CINV) are major adverse effects of cancer chemotherapy. This study investigated: (1) the impact of CINV on patients' health-related quality of life (HRQL) in daily clinical practice; (2) the association between patient characteristics and type of antiemetics and CINV; and (3) the role of CINV in physicians' decisions to modify antiemetic treatment. Patients and methods This prospective, multicenter study was conducted in nine general hospitals in the Netherlands. During three consecutive chemotherapy cycles, patients used a diary to record episodes of nausea, vomiting and antiemetic use. For each cycle, these ratings were made 1 day prior to and 7 days after having received chemotherapy. The influence of CINV on patients' HRQL was evaluated with the Functional Living Index-Emesis (FLIE) questionnaire at day 6 of each treatment cycle. (Changes in) antiemetic use were recorded by the treating nurse. Patient inclusion took place between May 2005 and May 2007. Results Two hundred seventy-seven patients were enrolled in the study. Acute and delayed nausea during the first treatment cycle was reported by 39% and 68% of the patients, respectively. The comparable figures for acute and delayed vomiting were 12% and 23%. During the first and subsequent treatment cycle, approximately one-third of the patients indicated that CINV had a substantial impact on their daily lives. Female patients and younger patients reported significantly more CINV than male and older patients. At all treatment cycles, patients receiving treatment with moderately emetogenic chemotherapy, containing anthracycline, reported more acute nausea than patients receiving highly emetogenic chemotherapy. Acute vomiting was associated significantly with change in (i.e., additional) antiemetic treatment. Delayed CINV did not influence antiemetic treatment. Conclusion CINV continues to be a problem that adversely affects the daily lives of patients. CINV is worse in women and in younger patients. In daily clinical practice, acute CINV, but not delayed CINV, results in changes in antiemetic treatment. In view of the effects of not only acute, but also delayed CINV on daily life, more attention should be paid to adjustment of antiemetic treatment to cover CINV complaints, later during the chemotherapy cycle
Carbamazepine for prevention of chemotherapy-induced nausea and vomiting: a pilot study
Control of nausea with palonosetron versus granisetron, both combined with dexamethasone, in patients receiving cisplatin- or anthracycline plus cyclophosphamide-based regimens
Bridging the efficacy–effectiveness gap: a regulator’s perspective on addressing variability of drug response
Can ginger ameliorate chemotherapy-induced nausea? Protocol of a randomized double blind, placebo-controlled trial (Study protocol)
Background Preliminary research shows ginger may be an effective adjuvant treatment for chemotherapy-induced nausea and vomiting but significant limitations need to be addressed before recommendations for clinical practice can be made. Methods/Design In a double–blinded randomised-controlled trial, chemotherapy-naïve patients will be randomly allocated to receive either 1.2 g of a standardised ginger extract or placebo per day. The study medication will be administrated as an adjuvant treatment to standard anti-emetic therapy and will be divided into four capsules per day, to be consumed approximately every 4 hours (300 mg per capsule administered q.i.d) for five days during the first three cycles of chemotherapy. Acute, delayed, and anticipatory symptoms of nausea and vomiting will be assessed over this time frame using a valid and reliable questionnaire, with nausea symptoms being the primary outcome. Quality of life, nutritional status, adverse effects, patient adherence, cancer-related fatigue, and CINV-specific prognostic factors will also be assessed. Discussion Previous trials in this area have noted limitations. These include the inconsistent use of standardized ginger formulations and valid questionnaires, lack of control for anticipatory nausea and prognostic factors that may influence individual CINV response, and the use of suboptimal dosing regimens. This trial is the first to address these issues by incorporating multiple unique additions to the study design including controlling for CINV-specific prognostic factors by recruiting only chemotherapy-naïve patients, implementing a dosing schedule consistent with the pharmacokinetics of oral ginger supplements, and independently analysing ginger supplements before and after recruitment to ensure potency. Our trial will also be the first to assess the effect of ginger supplementation on cancer-related fatigue and nutritional status. Chemotherapy-induced nausea and vomiting are distressing symptoms experienced by oncology patients; this trial will address the significant limitations within the current literature and in doing so, will investigate the effect of ginger supplementation as an adjuvant treatment in modulating nausea and vomiting symptoms. Trial registratio
Data Rich, Information Poor: Can We Use Electronic Health Records to Create a Learning Healthcare System for Pharmaceuticals?
Judicious use of real-world data (RWD) is expected to make all steps in the development and use of pharmaceuticals more effective and efficient, including research and development, regulatory decision making, health technology assessment, pricing, and reimbursement decisions and treatment. A "learning healthcare system" based on electronic health records and other routinely collected data will be required to harness the full potential of RWD to complement evidence based on randomized controlled trials. We describe and illustrate with examples the growing demand for a learning healthcare system; we contrast the exigencies of an efficient pharmaceutical ecosystem in the future with current deficiencies highlighted in recently published Organisation for Economic Co-operation and Development (OECD) reports; and we reflect on the steps necessary to enable the transition from healthcare data to actionable information. A coordinated effort from all stakeholders and international cooperation will be required to increase the speed of implementation of the learning healthcare system, to everybody's benefit
Chemotherapy-Induced Nausea and Vomiting (CINV) with GI Cancer Chemotherapy: Do We Need CINV Risk Score Over and Above Antiemetic Guidelines in Prescribing Antiemetic Regime?
"Threshold-crossing": A Useful Way to Establish the Counterfactual in Clinical Trials?
A central question in the assessment of benefit/harm of new treatments is: how does the average outcome on the new treatment (the factual) compare to the average outcome had patients received no treatment or a different treatment known to be effective (the counterfactual)? Randomized controlled trials (RCTs) are the standard for comparing the factual with the counterfactual. Recent developments necessitate and enable a new way of determining the counterfactual for some new medicines. For select situations, we propose a new framework for evidence generation, which we call "threshold-crossing." This framework leverages the wealth of information that is becoming available from completed RCTs and from real world data sources. Relying on formalized procedures, information gleaned from these data is used to estimate the counterfactual, enabling efficacy assessment of new drugs. We propose future (research) activities to enable "threshold-crossing" for carefully selected products and indications in which RCTs are not feasible
“Threshold‐crossing”: A Useful Way to Establish the Counterfactual in Clinical Trials?
A central question in the assessment of benefit/harm of new treatments is: how does the average outcome on the new treatment (the factual) compare to the average outcome had patients received no treatment or a different treatment known to be effective (the counterfactual)? Randomized controlled trials (RCTs) are the standard for comparing the factual with the counterfactual. Recent developments necessitate and enable a new way of determining the counterfactual for some new medicines. For select situations, we propose a new framework for evidence generation, which we call “threshold‐crossing.” This framework leverages the wealth of information that is becoming available from completed RCTs and from real world data sources. Relying on formalized procedures, information gleaned from these data is used to estimate the counterfactual, enabling efficacy assessment of new drugs. We propose future (research) activities to enable “threshold‐crossing” for carefully selected products and indications in which RCTs are not feasible
