615 research outputs found
R-modes in Neutron Stars with Crusts: Turbulent Saturation, Spin-down, and Crust Melting
Rossby waves (r-modes) have been suggested as a means to regulate the spin
periods of young or accreting neutron stars, and also to produce observable
gravitational wave radiation. R-modes involve primarily transverse,
incompressive motions of the star's fluid core. However, neutron stars gain
crusts early in their lives: therefore, r-modes also imply shear in the fluid
beneath the crust. We examine the criterion for this shear layer to become
turbulent, and derive the rate of dissipation in the turbulent regime. Unlike
dissipation from a viscous boundary layer, turbulent energy loss is nonlinear
in mode energy and can therefore cause the mode to saturate at amplitudes
typically much less than unity. This energy loss also reappears as heat below
the crust. We study the possibility of crust melting as well as its
implications for the spin evolution of low-mass X-ray binaries. Lastly, we
identify some universal features of the spin evolution that may have
observational consequences.Comment: 12 pages, 4 figures, submitted to Ap
Microscopic structure of a vortex line in superfluid neutron star matter
The microscopic structure of an isolated vortex line in superfluid neutron
star matter is studied by solving the Bogoliubov-de Gennes equations. Our
calculation, which is the starting point for a microscopic calculation of
pinning forces in neutron stars, shows that the size of the vortex core varies
differently with density, and is in general smaller than assumed in some
earlier calculations of vortex pinning in neutron star crusts. The implications
of this result are discussedComment: 5 pages, 2 figure
A Transgenic Rat for Investigating the Anatomy and Function of Corticotrophin Releasing Factor Circuits.
Corticotrophin-releasing factor (CRF) is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA) to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL) and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM) and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons
Spatial structure of quark Cooper pairs in a color superconductor
Spatial structure of Cooper pairs with quantum numbers color 3^*, I=J=L=S=0
in ud 2 flavor quark matter is studied by solving the gap equation and
calculating the coherence length in full momentum range without the weak
coupling approximation. Although the gap at the Fermi surface and the coherence
length depend on density weakly, the shape of the r-space pair wave function
varies strongly with density. This result indicates that quark Cooper pairs
become more bosonic at higher densities.Comment: 10 pages, 3 figures. The frequency dependence of the gap and the
limitation on the type I/type II discussion are mentioned briefly. To appear
in Phys. Rev.
Starquake-Induced Glitches in Pulsars
The neutron star crust is rigid material floating on a neutron-proton liquid core. As the star's spin rate slows, the changing stellar shape stresses the crust and causes fractures. These starquakes may trigger pulsar glitches as well as the jumps in spin-down rate that are observed to persist after some glitches. Earlier studies found that starquakes in spinning-down neutron stars push matter toward the magnetic poles, causing temporary misalignment of the star's spin and angular momentum. After the star relaxes to a new equilibrium orientation, the magnetic poles are closer to the equator, and the magnetic braking torque is increased. The magnitude and sign of the predicted torque changes are in agreement with the observed persistent spin-down offsets. Here we examine the relaxation processes by which the new equilibrium orientation is reached. We find that the neutron superfluid in the inner crust slows as the star's spin realigns with the angular momentum, causing the crust to spin more rapidly. For plausible parameters the time scale and the magnitude of the crust's spin up agree with the giant glitches in the Vela and other pulsars
Muons and emissivities of neutrinos in neutron star cores
In this work we consider the role of muons in various URCA processes relevant
for neutrino emissions in the core region of neutron stars. The calculations
are done for --stable nuclear matter with and without muons. We find
muons to appear at densities fm, slightly around the
saturation density for nuclear matter fm. The direct URCA
processes for nucleons are forbidden for densities below
fm, however the modified URCA processes with muons ), where is a
nucleon, result in neutrino emissivities comparable to those from
). This
opens up for further possibilities to explain the rapid cooling of neutrons
stars. Superconducting protons reduce however these emissivities at densities
below fm.Comment: 14 pages, Revtex style, 3 uuencoded figs include
Connected Green function approach to ground state symmetry breaking in -theory
Using the cluster expansions for n-point Green functions we derive a closed
set of dynamical equations of motion for connected equal-time Green functions
by neglecting all connected functions higher than order for the
-theory in dimensions. We apply the equations to the
investigation of spontaneous ground state symmetry breaking, i.e. to the
evaluation of the effective potential at temperature . Within our momentum
space discretization we obtain a second order phase transition (in agreement
with the Simon-Griffith theorem) and a critical coupling of
as compared to a first order phase transition and
from the Gaussian effective potential approach.Comment: 25 Revtex pages, 5 figures available via fpt from the directory
ugi-94-11 of [email protected] as one postscript file (there
was a bug in our calculations, all numerical results and figures have changed
significantly), ugi-94-1
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
- …
