1,091 research outputs found
Violator Spaces: Structure and Algorithms
Sharir and Welzl introduced an abstract framework for optimization problems,
called LP-type problems or also generalized linear programming problems, which
proved useful in algorithm design. We define a new, and as we believe, simpler
and more natural framework: violator spaces, which constitute a proper
generalization of LP-type problems. We show that Clarkson's randomized
algorithms for low-dimensional linear programming work in the context of
violator spaces. For example, in this way we obtain the fastest known algorithm
for the P-matrix generalized linear complementarity problem with a constant
number of blocks. We also give two new characterizations of LP-type problems:
they are equivalent to acyclic violator spaces, as well as to concrete LP-type
problems (informally, the constraints in a concrete LP-type problem are subsets
of a linearly ordered ground set, and the value of a set of constraints is the
minimum of its intersection).Comment: 28 pages, 5 figures, extended abstract was presented at ESA 2006;
author spelling fixe
Assessment of the effectiveness of head only and back-of-the-head electrical stunning of chickens
The study assesses the effectiveness of reversible head-only and back-of-the-head electrical stunning of chickens using 130–950 mA per bird at 50 Hz AC
Spotting Trees with Few Leaves
We show two results related to the Hamiltonicity and -Path algorithms in
undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10].
First, we demonstrate that the technique used can be generalized to finding
some -vertex tree with leaves in an -vertex undirected graph in
time. It can be applied as a subroutine to solve the
-Internal Spanning Tree (-IST) problem in
time using polynomial space, improving upon previous algorithms for this
problem. In particular, for the first time we break the natural barrier of
. Second, we show that the iterated random bipartition employed by
the algorithm can be improved whenever the host graph admits a vertex coloring
with few colors; it can be an ordinary proper vertex coloring, a fractional
vertex coloring, or a vector coloring. In effect, we show improved bounds for
-Path and Hamiltonicity in any graph of maximum degree
or with vector chromatic number at most 8
Perinatal Caffeine, Acting on Maternal Adenosine A1 Receptors, Causes Long-Lasting Behavioral Changes in Mouse Offspring
Background: There are lingering concerns about caffeine consumption during pregnancy or the early postnatal period, partly because there may be long-lasting behavioral changes after caffeine exposure early in life. Methodology/Principal Findings: We show that pregnant wild type (WT) mice given modest doses of caffeine (0.3 g/l in drinking water) gave birth to offspring that as adults exhibited increased locomotor activity in an open field. The offspring also responded to cocaine challenge with greater locomotor activity than mice not perinatally exposed to caffeine. We performed the same behavioral experiments on mice heterozygous for adenosine A 1 receptor gene (A 1RHz). In these mice signaling via adenosine A1 receptors is reduced to about the same degree as after modest consumption of caffeine. A1RHz mice had a behavioral profile similar to WT mice perinatally exposed to caffeine. Furthermore, it appeared that the mother’s genotype, not offspring’s, was critical for behavioral changes in adult offspring. Thus, if the mother partially lacked A1 receptors the offspring displayed more hyperactivity and responded more strongly to cocaine stimulation as adults than did mice of a WT mother, regardless of their genotype. This indicates that long-term behavioral alterations in the offspring result from the maternal effect of caffeine, and not a direct effect on fetus. WT offspring from WT mother but having a A1R Hz grandmother preserved higher locomotor response to cocaine. Conclusions/Significance: We suggest that perinatal caffeine, by acting on adenosine A 1 receptors in the mother, cause
On the Equivalence among Problems of Bounded Width
In this paper, we introduce a methodology, called decomposition-based
reductions, for showing the equivalence among various problems of
bounded-width.
First, we show that the following are equivalent for any :
* SAT can be solved in time,
* 3-SAT can be solved in time,
* Max 2-SAT can be solved in time,
* Independent Set can be solved in time, and
* Independent Set can be solved in time, where
tw and cw are the tree-width and clique-width of the instance, respectively.
Then, we introduce a new parameterized complexity class EPNL, which includes
Set Cover and Directed Hamiltonicity, and show that SAT, 3-SAT, Max 2-SAT, and
Independent Set parameterized by path-width are EPNL-complete. This implies
that if one of these EPNL-complete problems can be solved in time,
then any problem in EPNL can be solved in time.Comment: accepted to ESA 201
Tax Compliance Dancing
This is the final version. Available on open access from Berghahn via the DOI in this recordTaxation is central to the financing of most states, and monitoring that taxpayers comply with laws and regulations is a correspondingly important government activity. Governments have many ways to design tax systems, and no two national tax systems are the same. Hence, compliance strategies differ and so do outcomes. Complying with tax laws, beyond the fiscal aim of contributing revenue to a state, is multifaceted in a globalized world. Tax administrations struggle to control large multinational enterprises’ (MNEs) tax planning, avoidance and general evasion, whereas MNEs grapple with the problem of having to comply with widely divergent national tax systems. As a response, tax administrations, through membership organisations such as the OECD, invent forms of collaboration between tax administrations and MNEs—all with the goal of increasing tax compliance. One way they do this is through the co-operative compliance model. Here, we compare two compliance projects, based on this model, in Norway and Sweden to shed more light on what tax compliance is in practice. We elaborate on Valerie Braithwaite's seminal concept of tax compliance as a ‘dance’ between tax administrations and taxpayers. In so doing we underline the significance of paying attention to conceptions of time and space as critical elements of creating compliance in practice between tax administrations and MNEs.European Union Horizon 202
An automaton over data words that captures EMSO logic
We develop a general framework for the specification and implementation of
systems whose executions are words, or partial orders, over an infinite
alphabet. As a model of an implementation, we introduce class register
automata, a one-way automata model over words with multiple data values. Our
model combines register automata and class memory automata. It has natural
interpretations. In particular, it captures communicating automata with an
unbounded number of processes, whose semantics can be described as a set of
(dynamic) message sequence charts. On the specification side, we provide a
local existential monadic second-order logic that does not impose any
restriction on the number of variables. We study the realizability problem and
show that every formula from that logic can be effectively, and in elementary
time, translated into an equivalent class register automaton
- …