6 research outputs found

    Ionosphere modelling for Galileo single frequency users: illustration of the combination of the NeQuick model and GNSS data ingestion

    Full text link
    The ionospheric effect remains one of the main factors limiting the accuracy of Global Navigation Satellite Systems (GNSS) including Galileo. For single frequency users, this contribution to the error budget will be mitigated by an algorithm based on the NeQuick global ionospheric model. This quick-run empirical model provides flexible solutions for combining ionospheric information obtained from various sources, from GNSS to ionosondes and topside sounders. Hence it constitutes an interesting simulation tool not only serving Galileo needs for mitigation of the ionospheric effect but also widening the use of new data. In this study, we perform slant TEC data ingestion - the optimisation procedure underlying the Galileo single frequency ionospheric correction algorithm - into NeQuick for a dozen locations around the world where both an ionosonde and a GPS receiver are installed. These co-located instruments allow us to compare measured and modelled vertical TEC showing for example global statistics or dependence towards latitude. We analyse measurements for the year 2002 (high solar activity level) giving an insight into the situation we could observe when Galileo reaches its Full Operation Capability, during the next solar maximum. At last we compare Galileo and GPS ionospheric corrections. For Galileo, we end up with an underestimation of 11% and 4% depending on the version of NeQuick embedded in the algorithm, as well as a 22% standard deviation. This means respectively twice, five and 1.5 times better than GPS

    Assessment of the NeQuick model at mid-latitudes using GNSS TEC and ionosonde data

    Full text link
    The modelling of the Total Electron Content (TEC) plays an important role in global navigation satellite systems (GNSS) accuracy, especially for single-frequency receivers, the most common ones constituting the mass market. For the latter and in the framework of Galileo, the NeQuick model has been chosen for correcting the ionospheric error contribution and will be integrated into a global algorithm providing the users with daily updated information. In order to reach the ionosphere error correction level objective, the model itself as well as its use for Galileo are investigated. In our comparison process, we take advantage of various ionosphere data from several European stations (Dourbes in Belgium, El Arenosillo and Roquetes in Spain) where ionosonde and GPS TEC data are available for different solar activity levels. These data allow us to study NeQuick representation of the ionosphere at mid-latitudes. Constraining the model with ionosonde measurements, we investigate the difference between GPS-derived vertical TEC and corresponding values from NeQuick for a high solar activity level (year 2002). With this approach, we reach residual errors of less than 20% in standard deviation. We especially highlight the improvements from the latest (second) version of NeQuick and show the critical importance of the topside formulation

    Assessment of NeQuick ionospheric model for Galileo single-frequency users

    No full text
    The ionosphere is the main error source in GNSS measurements and in extreme cases can degrade the positioning significantly, with errors exceeding 100 m; therefore, modelling and predicting of this type of error is crucial and critical. The ionospheric effect can be reduced using different techniques, such as dual-frequency receiver or suitable augmentation system (DGPS, SBAS); the aforesaid approaches involve the use of expensive devices and/or complex architectures. Single frequency stand-alone receivers are the cheapest and most widespread GNSS devices; they can estimate and partially correct the error due to the ionosphere, through adequate algorithms, which use parameters broadcasted by the navigation message. The aim of this paper is performance assessment of the ionospheric model NeQuick, adopted by the European GNSS Galileo for single frequency receivers. The analysis is performed in measurements domain and the data are collected in different geographical locations and in various geomagnetic conditions
    corecore