1,768 research outputs found
Evolution of multi-gap superconductivity in the atomically thin limit: Strain-enhanced three-gap superconductivity in monolayer MgB
Starting from first principles, we show the formation and evolution of
superconducting gaps in MgB at its ultrathin limit. Atomically thin MgB
is distinctly different from bulk MgB in that surface states become
comparable in electronic density to the bulk-like - and -bands.
Combining the ab initio electron-phonon coupling with the anisotropic
Eliashberg equations, we show that monolayer MgB develops three distinct
superconducting gaps, on completely separate parts of the Fermi surface due to
the emergent surface contribution. These gaps hybridize nontrivially with every
extra monolayer added to the film, owing to the opening of additional coupling
channels. Furthermore, we reveal that the three-gap superconductivity in
monolayer MgB is robust over the entire temperature range that stretches up
to a considerably high critical temperature of 20 K. The latter can be boosted
to 50 K under biaxial tensile strain of 4\%, which is an enhancement
stronger than in any other graphene-related superconductor known to date.Comment: To appear in Phys. Re
Tensor gauge fields in arbitrary representations of GL(D,R): II. Quadratic actions
Quadratic, second-order, non-local actions for tensor gauge fields
transforming in arbitrary irreducible representations of the general linear
group in D-dimensional Minkowski space are explicitly written in a compact form
by making use of Levi-Civita tensors. The field equations derived from these
actions ensure the propagation of the correct massless physical degrees of
freedom and are shown to be equivalent to non-Lagrangian local field equations
proposed previously. Moreover, these actions allow a frame-like reformulation a
la MacDowell-Mansouri, without any trace constraint in the tangent indices.Comment: LaTeX, 53 pages, no figure. Accepted for publication in
Communications in Mathematical Physics. Local Fierz-Pauli programme achieved
by completing the analysis of Labastid
Minimal unitary representation of SU(2,2) and its deformations as massless conformal fields and their supersymmetric extensions
We study the minimal unitary representation (minrep) of SO(4,2) over an
Hilbert space of functions of three variables, obtained by quantizing its
quasiconformal action on a five dimensional space. The minrep of SO(4,2), which
coincides with the minrep of SU(2,2) similarly constructed, corresponds to a
massless conformal scalar in four spacetime dimensions. There exists a
one-parameter family of deformations of the minrep of SU(2,2). For positive
(negative) integer values of the deformation parameter \zeta one obtains
positive energy unitary irreducible representations corresponding to massless
conformal fields transforming in (0,\zeta/2) ((-\zeta/2,0)) representation of
the SL(2,C) subgroup. We construct the supersymmetric extensions of the minrep
of SU(2,2) and its deformations to those of SU(2,2|N). The minimal unitary
supermultiplet of SU(2,2|4), in the undeformed case, simply corresponds to the
massless N=4 Yang-Mills supermultiplet in four dimensions. For each given
non-zero integer value of \zeta, one obtains a unique supermultiplet of
massless conformal fields of higher spin. For SU(2,2|4) these supermultiplets
are simply the doubleton supermultiplets studied in arXiv:hep-th/9806042.Comment: Revised with an extended introduction and additional references.
Typos corrected. 49 pages; Latex fil
Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA)
Over the past century, the Hampton Roads area of the Chesapeake Bay region has experienced one of the highest rates of relative sea level rise on the Atlantic coast of the United States. This rate of relative sea level rise results from a combination of land subsidence, which has long been known to be present in the region, and rising seas associated with global warming on long timescales and exacerbated by shifts in ocean dynamics on shorter timescales. An understanding of the current-day magnitude of each component is needed to create accurate projections of future relative sea level rise upon which to base planning efforts. The objective of this study is to estimate the land component of relative sea level rise using interferometric synthetic aperture radar (InSAR) analysis applied to ALOS-1 synthetic aperture radar data acquired during 2007–2011 to generate high-spatial resolution (20–30 m) estimates of vertical land motion. Although these results are limited by the uncertainty associated with the small set of available historical SAR data, they highlight both localized rates of high subsidence and a significant spatial variability in subsidence, emphasizing the need for further measurement, which could be done with Sentinel-1 and NASA’s upcoming NISAR mission
A note on spin-s duality
Duality is investigated for higher spin (), free, massless, bosonic
gauge fields. We show how the dual formulations can be derived from a common
"parent", first-order action. This goes beyond most of the previous treatments
where higher-spin duality was investigated at the level of the equations of
motion only. In D=4 spacetime dimensions, the dual theories turn out to be
described by the same Pauli-Fierz (s=2) or Fronsdal () action (as it
is the case for spin 1). In the particular s=2 D=5 case, the Pauli-Fierz action
and the Curtright action are shown to be related through duality. A crucial
ingredient of the analysis is given by the first-order, gauge-like,
reformulation of higher spin theories due to Vasiliev.Comment: Minor corrections, reference adde
Quantizing non-Lagrangian gauge theories: an augmentation method
We discuss a recently proposed method of quantizing general non-Lagrangian
gauge theories. The method can be implemented in many different ways, in
particular, it can employ a conversion procedure that turns an original
non-Lagrangian field theory in dimensions into an equivalent Lagrangian
topological field theory in dimensions. The method involves, besides the
classical equations of motion, one more geometric ingredient called the
Lagrange anchor. Different Lagrange anchors result in different quantizations
of one and the same classical theory. Given the classical equations of motion
and Lagrange anchor as input data, a new procedure, called the augmentation, is
proposed to quantize non-Lagrangian dynamics. Within the augmentation
procedure, the originally non-Lagrangian theory is absorbed by a wider
Lagrangian theory on the same space-time manifold. The augmented theory is not
generally equivalent to the original one as it has more physical degrees of
freedom than the original theory. However, the extra degrees of freedom are
factorized out in a certain regular way both at classical and quantum levels.
The general techniques are exemplified by quantizing two non-Lagrangian models
of physical interest.Comment: 46 pages, minor correction
Very Extended and at low levels, Gravity and Supergravity
We define a level for a large class of Lorentzian Kac-Moody algebras. Using
this we find the representation content of very extended and
(i.e. ) at low levels in terms of and
representations respectively. The results are consistent with the conjectured
very extended and symmetries of gravity and maximal supergravity
theories given respectively in hep-th/0104081 and hep-th/0107209. We explain
how these results provided further evidence for these conjectures.Comment: 16 pages, plain tex (equation 3.3 modified and one reference
expanded
Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions
Cubic couplings between a complex scalar field and a tower of symmetric
tensor gauge fields of all ranks are investigated on any constant curvature
spacetime of dimension d>2. Following Noether's method, the gauge fields
interact with the scalar field via minimal coupling to the conserved currents.
A symmetric conserved current, bilinear in the scalar field and containing up
to r derivatives, is obtained for any rank r from its flat spacetime
counterpart in dimension d+1, via a radial dimensional reduction valid
precisely for the mass-square domain of unitarity in (anti) de Sitter spacetime
of dimension d. The infinite collection of conserved currents and cubic
vertices are summarized in a compact form by making use of generating functions
and of the Weyl/Wigner quantization on constant curvature spaces.Comment: 35+1 pages, v2: two references added, typos corrected, enlarged
discussions in Subsection 5.2 and in Conclusion, to appear in JHE
Active deformation in the Pamir – Tian Shan collision zone, NW China
Abstract HKT-ISTP 2013
A
- …