42 research outputs found

    Application of advanced biomechanical methods in studying low back pain – recent development in estimation of lower back loads and large-array surface electromyography and findings

    Get PDF
    Babak Bazrgari,1 Ting Xia2 1F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 2Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA Abstract: Low back pain (LBP) is a major public health problem and the leading disabling musculoskeletal disorder globally. A number of biomechanical methods using kinematic, kinetic and/or neuromuscular approaches have been used to study LBP. In this narrative review, we report recent developments in two biomechanical methods: estimation of lower back loads and large-array surface electromyography (LA-SEMG) and the findings associated with LBP. The ability to estimate lower back loads is very important for the prevention and the management of work-related low back injuries based on the mechanical loading model as one category of LBP classification. The methods used for estimation of lower back loads vary from simple rigid link-segment models to sophisticated, optimization-based finite element models. In general, reviewed reports of differences in mechanical loads experienced in lower back tissues between patients with LBP and asymptomatic individuals are not consistent. Such lack of consistency is primarily due to differences in activities under which lower back mechanical loads were investigated as well as heterogeneity of patient populations. The ability to examine trunk neuromuscular behavior is particularly relevant to the motor control model, another category of LBP classification. LA-SEMG not only is noninvasive but also provides spatial resolution within and across muscle groups. Studies using LA-SEMG showed that healthy individuals exhibit highly organized, symmetric back muscle activity patterns, suggesting an orderly recruitment of muscle fibers. In contrast, back muscle activity patterns in LBP patients are asymmetric or multifocal, suggesting lack of orderly muscle recruitment. LA-SEMG was also shown capable of capturing unique back muscle response to manual therapy. In conclusion, estimation of low back load and LA-SEMG techniques demonstrated promising potentials for understanding LBP and treatment effects. Future studies are warranted to fully establish clinical validity of these two biomechanical methods. Keywords: low back pain, low back loads, large-array electromyography, narrative revie

    A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk neuromuscular strategy

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe geometrical information from imaging, if combined with optimization-based methods of neuromuscular assessment, may provide a unique platform for personalized assessment of trunk neuromuscular behavior. Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in trunk neuromuscular behavior can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different hypothetical trunk neuromuscular strategies (TNSs). Each TNS optimized one aspect of lower back biomechanics and was assumed to either represent the TNS of asymptomatic persons or a neuromuscular abnormality. For each TNS, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TNS ranged from 0° to 0.5° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in neuromuscular strategy ranged from 2.4° to 7.5° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two TNSs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Combined imaging and computational modeling appears to have potentials for predicting alterations in neuromuscular strategies.This work was supported, in part, by an award (5R03HD086512-02) from the National Center for Medical Rehabilitation Research (NIH-NICHD) and the Office of the Assistant Secretary of Defense for Health Affairs, through the Peer Reviewed Orthopaedic Research Program (award #W81XWH-14-2-0144)

    The differential effects of core stabilization exercise regime and conventional physiotherapy regime on postural control parameters during perturbation in patients with movement and control impairment chronic low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to examine the differential effect of core stability exercise training and conventional physiotherapy regime on altered postural control parameters in patients with chronic low back pain (CLBP). As heterogeneity in CLBP population moderates the effect of intervention on outcomes, in this study, interventions approaches were used based on sub-groups of CLBP.</p> <p>Methods</p> <p>This was an allocation concealed, blinded, sequential and pragmatic control trial. Three groups of participants were investigated during postural perturbations: 1) CLBP patients with movement impairment (n = 15, MI group) randomized to conventional physiotherapy regime 2) fifteen CLBP patients with control impairment randomized to core stability group (CI group) and 3) fifteen healthy controls (HC).</p> <p>Results</p> <p>The MI group did not show any significant changes in postural control parameters after the intervention period however they improved significantly in disability scores and fear avoidance belief questionnaire work score (P < 0.05). The CI group showed significant improvements in Fx, Fz, and My variables (p < 0.013, p < 0.006, and p < 0.002 respectively with larger effect sizes: Hedges's g > 0.8) after 8 weeks of core stability exercises for the adjusted p values. Postural control parameters of HC group were analyzed independently with pre and post postural control parameters of CI and MI group. This revealed the significant improvements in postural control parameters in CI group compared to MI group indicating the specific adaptation to the core stability exercises in CI group. Though the disability scores were reduced significantly in CI and MI groups (p < 0.001), the post intervention scores between groups were not found significant (p < 0.288). Twenty percentage absolute risk reduction in flare-up rates during intervention was found in CI group (95% CI: 0.69-0.98).</p> <p>Conclusions</p> <p>In this study core stability exercise group demonstrated significant improvements after intervention in ground reaction forces (Fz, Mz; g > 0.8) indicating changes in load transfer patterns during perturbation similar to HC group.</p> <p>Trial registration</p> <p>UTRN095032158-06012009423714</p

    Application of advanced biomechanical methods in studying low back pain &ndash; recent development in estimation of lower back loads and large-array surface electromyography and findings

    No full text
    Babak Bazrgari,1 Ting Xia2 1F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 2Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA Abstract: Low back pain (LBP) is a major public health problem and the leading disabling musculoskeletal disorder globally. A number of biomechanical methods using kinematic, kinetic and/or neuromuscular approaches have been used to study LBP. In this narrative review, we report recent developments in two biomechanical methods: estimation of lower back loads and large-array surface electromyography (LA-SEMG) and the findings associated with LBP. The ability to estimate lower back loads is very important for the prevention and the management of work-related low back injuries based on the mechanical loading model as one category of LBP classification. The methods used for estimation of lower back loads vary from simple rigid link-segment models to sophisticated, optimization-based finite element models. In general, reviewed reports of differences in mechanical loads experienced in lower back tissues between patients with LBP and asymptomatic individuals are not consistent. Such lack of consistency is primarily due to differences in activities under which lower back mechanical loads were investigated as well as heterogeneity of patient populations. The ability to examine trunk neuromuscular behavior is particularly relevant to the motor control model, another category of LBP classification. LA-SEMG not only is noninvasive but also provides spatial resolution within and across muscle groups. Studies using LA-SEMG showed that healthy individuals exhibit highly organized, symmetric back muscle activity patterns, suggesting an orderly recruitment of muscle fibers. In contrast, back muscle activity patterns in LBP patients are asymmetric or multifocal, suggesting lack of orderly muscle recruitment. LA-SEMG was also shown capable of capturing unique back muscle response to manual therapy. In conclusion, estimation of low back load and LA-SEMG techniques demonstrated promising potentials for understanding LBP and treatment effects. Future studies are warranted to fully establish clinical validity of these two biomechanical methods. Keywords: low back pain, low back loads, large-array electromyography, narrative revie
    corecore