68 research outputs found

    Measurements of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} spectra in 40^{40}Ar+45^{45}Sc collisions at 13AA to 150AA GeV/cc

    Full text link
    The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of π±\pi^\pm, K±K^\pm, pp and pˉ\bar{p} produced in 40^{40}Ar+45^{45}Sc collisions at beam momenta of 13AA, 19AA, 30AA, 40AA, 75AA and 150AA GeV/cc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the K±K^\pm/π±\pi^\pm ratios as well as of inverse slope parameters of the K±K^\pm transverse mass distributions are placed in between those found in inelastic pp+pp and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical (SMES, HRG) or dynamical (EPOS, UrQMD, PHSD, SMASH) models

    Measurements of π+\pi^+, π\pi^-, pp, pˉ\bar{p}, K+K^+ and KK^- production in 120 GeV/cc p + C interactions

    Full text link
    This paper presents multiplicity measurements of charged hadrons produced in 120 GeV/cc proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different data-taking periods, with increased phase space coverage in the second configuration due to the addition of new subdetectors. Particle identification via dE/dxdE/dx was employed to obtain double-differential production multiplicities of π+\pi^+, π\pi^-, pp, pˉ\bar{p}, K+K^+ and KK^-. These measurements are presented as a function of laboratory momentum in intervals of laboratory polar angle covering the range from 0 to 450 mrad. They provide crucial inputs for current and future long-baseline neutrino experiments, where they are used to estimate the initial neutrino flux

    Search for the critical point of strongly-interacting matter in 40^{40}Ar + 45^{45}Sc collisions at 150A Ge V /c using scaled factorial moments of protons

    Get PDF
    The critical point of dense, strongly interacting matter is searched for at the CERN SPS in 40^{40}Ar + 45^{45}Sc collisions at 150A Ge V /c. The dependence of second-order scaled factorial moments of proton multiplicity distribution on the number of subdivisions of transverse momentum space is measured. The intermittency analysis is performed using both transverse momentum and cumulative transverse momentum. For the first time, statistically independent data sets are used for each subdivision number. The obtained results do not indicate any statistically significant intermittency pattern. An upper limit on the fraction of correlated proton pairs and the power of the correlation function is obtained based on a comparison with the Power-law Model developed for this purpose

    A hollow rectangular plasmonic absorber for nano biosensing applications

    No full text
    © 2018 Elsevier GmbH In this paper, we have introduced a hollow rectangular plasmonic absorber for Terahertz region. The result of our study shows that the nanoparticle absorber delivers a high absorbance of 90%, and enhances the electric field drastically as six times, which makes it an ideal choice for biosensing applications. The effect of the particle size and surface topology is investigated to maximize the absorbance of the structure and can be noticed for frequency tuning. In addition, for biosensing applications, the shift in the resonance frequency and the Figure of Merit (FOM) was studied by exposing the nanoparticles with different biomaterials. The results revealed that by concentrating the energy, we will be able to distinguish different materials with a very high accuracy. As a matter of fact, the parametric studies indicate that the suggested structure has outstanding resonance frequency stability. Therefore, the predictable fabrication distortion has less effect on frequency shift and absorbance and consequently, this particle is advantageous for commercial optical applications such as the solar cell

    Novel optical polarizer design based on metasurface nano aperture for biological sensing in mid-infrared regime

    No full text
    © 2017, Springer Science+Business Media New York. Since Metasurfaces are playing important roles in optical devices such as optical polarizers and detectors, in this article, we have proposed a novel shape of nano aperture antenna for mid-infrared applications such as bio-sensing and other potential optical applications based on plasmonic characteristic of the gold layer over the SiN substrate. The transmittance tensor is obtained for vertical and horizontal linear polarization and base on boundary condition of the metasurface, the circular polarizations are extracted which are confirmed by the electric field distributions. We have shown by the parametric studies that the phase difference is altered by the gap and slot width and so with the dimension modification, we are able to achieve circular polarizer in the optical range. The biological materials with a thickness of 80 nm have then been placed over the metasurface layer and the figures of merits have been obtained. We have revealed that when the circular polarization is osculated to the metasurface at a special frequency the linear polarization is obtained in the other side of the metasurface. The nano aperture has been modeled and the finite difference time domain calculations are performed in CST Microwave Studio as a commercial full wave simulation software

    Application of biocementation technique using Bacillus sphaericus for stabilization of soil surface and dust storm control

    No full text
    Dust emission and wind erosion are widespread phenomena in arid and semi-arid regions, which have far-reaching harmful effects to the environment. This study aimed to use microbial induced carbonate precipitation (MICP) method with Bacillus sphaericus to reduce soil losses that occur in a dust-producing area due to wind erosion in the Ilam Province, Iran. Soil samples at the 0–30 cm depth were used and sterilized in an autoclave for 2 h at 121°C and 103 kPa. Approximately 3 kg soils were weighed and poured in the 35 cm×35 cm×3 cm trays. Different treatments included two levels of B. sphaericus (0.0 and 0.5 OD), three levels of suspension volume (123, 264, and 369 mL), two levels of urea-chloride cementation solution (0.0 and 0.5 M), and two levels of bacterial spray (once and twice spray). After 28 d, soil properties such as soil mass loss, penetration resistance, and aggregate stability were measured. The results showed a low soil mass loss (1 g) in F14 formulation (twice bacterial spray+264 mL suspension volume+without cementation solution) and a high soil mass loss (246 g) in F5 formulation (without bacteria+264 mL suspension volume+0.5 M cementation solution). The highest (42.55%) and the lowest (19.47%) aggregate stabilities were observed in F16 and F7 formulations, respectively, and the highest penetration resistance (3.328 kg/cm2) was observed in F18 formulation. According to the final results, we recommended the formulation with twice bacterial spray, 0.5 M cementation solution, and 269 mL suspension volume as the best combination for soil surface stabilization. Furthermore, this method is environmentally friendly because it has no adverse effects on soil, water, and plants, thus, it would be an efficient approach to stabilize soil surface.</p
    corecore