1,935 research outputs found
Modelling and optimisation of the operation of a radiant warmer
This paper presents numerical calculations of the temperature field obtained for the case of a neonate placed under a radiant warmer. The results of the simulations show a very non-uniform temperature distribution on the skin of the neonate, which may cause increased evaporation leading to severe dehydration. For this reason, we propose some modifications on the geometry and operation of the radiant warmer, in order to make the temperature distribution more uniform and prevent the high temperature gradients observed on the surface of the neonate. It is concluded that placing a high conductivity blanket over the neonate and introducing additional screens along the side of the mattress, thus recovering the radiation heat escaping through the side boundaries, helped providing more uniform temperature fields.The European Union for the Marie Curie Fellowship grant awarded to the Centre for CFD, University of Leeds
Systematic Improvement of Parton Showers with Effective Theory
We carry out a systematic classification and computation of next-to-leading
order kinematic power corrections to the fully differential cross section in
the parton shower. To do this we devise a map between ingredients in a parton
shower and operators in a traditional effective field theory framework using a
chain of soft-collinear effective theories. Our approach overcomes several
difficulties including avoiding double counting and distinguishing
approximations that are coordinate choices from true power corrections.
Branching corrections can be classified as hard-scattering, that occur near the
top of the shower, and jet-structure, that can occur at any point inside it.
Hard-scattering corrections include matrix elements with additional hard
partons, as well as power suppressed contributions to the branching for the
leading jet. Jet-structure corrections require simultaneous consideration of
potential 1 -> 2 and 1 -> 3 branchings. The interference structure induced by
collinear terms with subleading powers remains localized in the shower.Comment: 54 pages, 24 figures, plus a few appendices. v2: included a parameter
"eta" to account for energy loss, title improved, journal versio
The state of peer-to-peer network simulators
Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results
Singlet Portal to the Hidden Sector
Ultraviolet physics typically induces a kinetic mixing between gauge singlets
which is marginal and hence non-decoupling in the infrared. In singlet
extensions of the minimal supersymmetric standard model, e.g. the
next-to-minimal supersymmetric standard model, this furnishes a well motivated
and distinctive portal connecting the visible sector to any hidden sector which
contains a singlet chiral superfield. In the presence of singlet kinetic
mixing, the hidden sector automatically acquires a light mass scale in the
range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with
R-parity conservation, superparticles produced at the LHC invariably cascade
decay into hidden sector particles. Since the hidden sector singlet couples to
the visible sector via the Higgs sector, these cascades necessarily produce a
Higgs boson in an order 0.01 - 1 fraction of events. Furthermore,
supersymmetric cascades typically produce highly boosted, low-mass hidden
sector singlets decaying visibly, albeit with displacement, into the heaviest
standard model particles which are kinematically accessible. We study
experimental constraints on this broad class of theories, as well as the role
of singlet kinetic mixing in direct detection of hidden sector dark matter. We
also present related theories in which a hidden sector singlet interacts with
the visible sector through kinetic mixing with right-handed neutrinos.Comment: 12 pages, 5 figure
Lepton Jets in (Supersymmetric) Electroweak Processes
We consider some of the recent proposals in which weak-scale dark matter is
accompanied by a GeV scale dark sector that could produce spectacular
lepton-rich events at the LHC. Since much of the collider phenomenology is only
weakly model dependent it is possible to arrive at generic predictions for the
discovery potential of future experimental searches. We concentrate on the
production of dark states through bosons and electroweak-inos at the
Tevatron or LHC, which are the cleanest channels for probing the dark sector.
We properly take into account the effects of dark radiation and dark cascades
on the formation of lepton jets. Finally, we present a concrete definition of a
lepton jet and suggest several approaches for inclusive experimental searches.Comment: 23 pages, 13 figures, published version, added section 3.3 expanding
on lepton jet's morpholog
Dark Force Detection in Low Energy e-p Collisions
We study the prospects for detecting a light boson X with mass m_X < 100 MeV
at a low energy electron-proton collider. We focus on the case where X
dominantly decays to e+ e- as motivated by recent "dark force" models. In order
to evade direct and indirect constraints, X must have small couplings to the
standard model (alpha_X 10 MeV).
By comparing the signal and background cross sections for the e- p e+ e- final
state, we conclude that dark force detection requires an integrated luminosity
of around 1 inverse attobarn, achievable with a forthcoming JLab proposal.Comment: 38 pages, 19 figures; v2, references adde
Searching for the light dark gauge boson in GeV-scale experiments
We study current constraints and search prospects for a GeV scale vector
boson at a range of low energy experiments. It couples to the Standard Model
charged particles with a strength <= 10^-3 to 10^-4 of that of the photon. The
possibility of such a particle mediating dark matter self-interactions has
received much attention recently. We consider searches at low energy high
luminosity colliders, meson decays, and fixed target experiments. Based on
available data, searches both at colliders and in meson decays can discover or
exclude such a scenario if the coupling strength is on the larger side. We
emphasize that a dedicated fixed target experiment has a much better potential
in searching for such a gauge boson, and outline the desired properties of such
an experiment. Two different optimal designs should be implemented to cover the
range of coupling strength 10^-3 to 10^-5, and < 10^-5 of the photon,
respectively. We also briefly comment on other possible ways of searching for
such a gauge boson.Comment: 33 pages, 5 figures; v2: corrected discussion of Upsilon decays,
updates to discussion of fixed-target experiments and QED constraints,
numerous minor changes, references added; v3: typo corrected relative to the
JHEP published versio
Analysis of two-point statistics of cosmic shear: III. Covariances of shear measures made easy
In recent years cosmic shear, the weak gravitational lensing effect by the
large-scale structure of the Universe, has proven to be one of the
observational pillars on which the cosmological concordance model is founded.
Several cosmic shear statistics have been developed in order to analyze data
from surveys. For the covariances of the prevalent second-order measures we
present simple and handy formulae, valid under the assumptions of Gaussian
density fluctuations and a simple survey geometry. We also formulate these
results in the context of shear tomography, i.e. the inclusion of redshift
information, and generalize them to arbitrary data field geometries. We define
estimators for the E- and B-mode projected power spectra and show them to be
unbiased in the case of Gaussianity and a simple survey geometry. From the
covariance of these estimators we demonstrate how to derive covariances of
arbitrary combinations of second-order cosmic shear measures. We then
recalculate the power spectrum covariance for general survey geometries and
examine the bias thereby introduced on the estimators for exemplary
configurations. Our results for the covariances are considerably simpler than
and analytically shown to be equivalent to the real-space approach presented in
the first paper of this series. We find good agreement with other numerical
evaluations and confirm the general properties of the covariance matrices. The
studies of the specific survey configurations suggest that our simplified
covariances may be employed for realistic survey geometries to good
approximation.Comment: 15 pages, including 4 figures (Fig. 3 reduced in quality); minor
changes, Fig. 4 extended; published in A&
Quantum Gates and Memory using Microwave Dressed States
Trapped atomic ions have been successfully used for demonstrating basic
elements of universal quantum information processing (QIP). Nevertheless,
scaling up of these methods and techniques to achieve large scale universal
QIP, or more specialized quantum simulations remains challenging. The use of
easily controllable and stable microwave sources instead of complex laser
systems on the other hand promises to remove obstacles to scalability.
Important remaining drawbacks in this approach are the use of magnetic field
sensitive states, which shorten coherence times considerably, and the
requirement to create large stable magnetic field gradients. Here, we present
theoretically a novel approach based on dressing magnetic field sensitive
states with microwave fields which addresses both issues and permits fast
quantum logic. We experimentally demonstrate basic building blocks of this
scheme to show that these dressed states are long-lived and coherence times are
increased by more than two orders of magnitude compared to bare magnetic field
sensitive states. This changes decisively the prospect of microwave-driven ion
trap QIP and offers a new route to extend coherence times for all systems that
suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or
circuit-QED systems.Comment: 9 pages, 4 figure
Conservative Constraints on Dark Matter from the Fermi-LAT Isotropic Diffuse Gamma-Ray Background Spectrum
We examine the constraints on final state radiation from Weakly Interacting
Massive Particle (WIMP) dark matter candidates annihilating into various
standard model final states, as imposed by the measurement of the isotropic
diffuse gamma-ray background by the Large Area Telescope aboard the Fermi
Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark
matter annihilation has contributions from the local Milky Way (MW) as well as
from extragalactic dark matter. The signal from the MW is very insensitive to
the adopted dark matter profile of the halos, and dominates the signal from
extragalactic halos, which is sensitive to the low mass cut-off of the halo
mass function. We adopt a conservative model for both the low halo mass
survival cut-off and the substructure boost factor of the Galactic and
extragalactic components, and only consider the primary final state radiation.
This provides robust constraints which reach the thermal production
cross-section for low mass WIMPs annihilating into hadronic modes. We also
reanalyze limits from HESS observations of the Galactic Ridge region using a
conservative model for the dark matter halo profile. When combined with the
HESS constraint, the isotropic diffuse spectrum rules out all interpretations
of the PAMELA positron excess based on dark matter annihilation into two lepton
final states. Annihilation into four leptons through new intermediate states,
although constrained by the data, is not excluded.Comment: 11 pages, 5 figures. v3: minor revisions, matches version to appear
in JCA
- …
