5,782 research outputs found
Towards the Unification of Gravity and other Interactions: What has been Missed?
Faced with the persisting problem of the unification of gravity with other
fundamental interactions we investigate the possibility of a new paradigm,
according to which the basic space of physics is a multidimensional space
associated with matter configurations. We consider general
relativity in . In spacetime, which is a 4-dimensional subspace of
, we have not only the 4-dimensional gravity, but also other
interactions, just as in Kaluza-Klein theories. We then consider a finite
dimensional description of extended objects in terms of the center of mass,
area, and volume degrees of freedom, which altogether form a 16-dimensional
manifold whose tangent space at any point is Clifford algebra Cl(1,3). The
latter algebra is very promising for the unification, and it provides
description of fermions.Comment: 11 pages; Talk presented at "First Mediterranean Conference on
Classical and Quantum Gravity", Kolymbari, Crete, Greece, 14-18 September
200
The geometry of the Barbour-Bertotti theories II. The three body problem
We present a geometric approach to the three-body problem in the
non-relativistic context of the Barbour-Bertotti theories. The Riemannian
metric characterizing the dynamics is analyzed in detail in terms of the
relative separations. Consequences of a conformal symmetry are exploited and
the sectional curvatures of geometrically preferred surfaces are computed. The
geodesic motions are integrated. Line configurations, which lead to curvature
singularities for , are investigated. None of the independent scalars
formed from the metric and curvature tensor diverges there.Comment: 16 pages, 2 eps figures, to appear in Classical and Quantum Gravit
The geometry of the Barbour-Bertotti theories I. The reduction process
The dynamics of interacting particles is investigated in the
non-relativistic context of the Barbour-Bertotti theories. The reduction
process on this constrained system yields a Lagrangian in the form of a
Riemannian line element. The involved metric, degenerate in the flat
configuration space, is the first fundamental form of the space of orbits of
translations and rotations (the Leibniz group). The Riemann tensor and the
scalar curvature are computed by a generalized Gauss formula in terms of the
vorticity tensors of generators of the rotations. The curvature scalar is
further given in terms of the principal moments of inertia of the system. Line
configurations are singular for . A comparison with similar methods in
molecular dynamics is traced.Comment: 15 pages, to appear in Classical and Quantum Gravit
Covariant quantization of membrane dynamics
A Lorentz covariant quantization of membrane dynamics is defined, which also
leaves unbroken the full three dimensional diffeomorphism invariance of the
membrane. Among the applications studied are the reduction to string theory,
which may be understood in terms of the phase space and constraints, and the
interpretation of physical,zero-energy states. A matrix regularization is
defined as in the light cone gauged fixed theory but there are difficulties
implementing all the gauge symmetries. The problem involves the
non-area-preserving diffeomorphisms which are realized non-linearly in the
classical theory. In the quantum theory they do not seem to have a consistent
implementation for finite N. Finally, an approach to a genuinely background
independent formulation of matrix dynamics is briefly described.Comment: Latex, 21 pages, no figure
Einstein gravity as a 3D conformally invariant theory
We give an alternative description of the physical content of general
relativity that does not require a Lorentz invariant spacetime. Instead, we
find that gravity admits a dual description in terms of a theory where local
size is irrelevant. The dual theory is invariant under foliation preserving
3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume
(for the spatially compact case). Locally, this symmetry is identical to that
of Horava-Lifshitz gravity in the high energy limit but our theory is
equivalent to Einstein gravity. Specifically, we find that the solutions of
general relativity, in a gauge where the spatial hypersurfaces have constant
mean extrinsic curvature, can be mapped to solutions of a particular gauge
fixing of the dual theory. Moreover, this duality is not accidental. We provide
a general geometric picture for our procedure that allows us to trade foliation
invariance for conformal invariance. The dual theory provides a new proposal
for the theory space of quantum gravity.Comment: 27 pages. Published version (minor changes and corrections
Quenched QCD at finite density
Simulations of quenched at relatively small but {\it nonzero} chemical
potential on lattices indicate that the nucleon
screening mass decreases linearly as increases predicting a critical
chemical potential of one third the nucleon mass, , by extrapolation.
The meson spectrum does not change as increases over the same range, from
zero to . Past studies of quenched lattice QCD have suggested that
there is phase transition at . We provide alternative
explanations for these results, and find a number of technical reasons why
standard lattice simulation techniques suffer from greatly enhanced
fluctuations and finite size effects for ranging from to
. We find evidence for such problems in our simulations, and suggest
that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte
The physical gravitational degrees of freedom
When constructing general relativity (GR), Einstein required 4D general
covariance. In contrast, we derive GR (in the compact, without boundary case)
as a theory of evolving 3-dimensional conformal Riemannian geometries obtained
by imposing two general principles: 1) time is derived from change; 2) motion
and size are relative. We write down an explicit action based on them. We
obtain not only GR in the CMC gauge, in its Hamiltonian 3 + 1 reformulation but
also all the equations used in York's conformal technique for solving the
initial-value problem. This shows that the independent gravitational degrees of
freedom obtained by York do not arise from a gauge fixing but from hitherto
unrecognized fundamental symmetry principles. They can therefore be identified
as the long-sought Hamiltonian physical gravitational degrees of freedom.Comment: Replaced with published version (minor changes and added references
Chiral Symmetry Restoration and Realisation of the Goldstone Mechanism in the U(1) Gross-Neveu Model at Non-Zero Chemical Potential
We simulate the Gross-Neveu model in 2+1 dimensions at nonzero baryon density
(chemical potential mu =/= 0). It is possible to formulate this model with a
real action and therefore to perform standard hybrid Monte Carlo simulations
with mu =/= 0 in the functional measure. We compare the physical observables
from these simulations with simulations using the Glasgow method where the
value of mu in the functional measure is fixed at a value mu_upd. We find that
the observables are sensitive to the choice of mu_upd. We consider the
implications of our findings for Glasgow method QCD simulations at mu =/= 0. We
demonstrate that the realisation of the Goldstone mechanism in the Gross-Neveu
model is fundamentally different from that in QCD. We find that this difference
explains why there is an unphysical transition in QCD simulations at mu =/= 0
associated with the pion mass scale whereas the transition in the Gross-Neveu
model occurs at a larger mass scale and is therefore consistent with
theoretical predictions. We note classes of theories which are exceptions to
the Vafa-Witten theorem which permit the possibility of formation of baryon
number violating diquark condensates.Comment: 28 pages RevTe
Relational Particle Models. II. Use as toy models for quantum geometrodynamics
Relational particle models are employed as toy models for the study of the
Problem of Time in quantum geometrodynamics. These models' analogue of the thin
sandwich is resolved. It is argued that the relative configuration space and
shape space of these models are close analogues from various perspectives of
superspace and conformal superspace respectively. The geometry of these spaces
and quantization thereupon is presented. A quantity that is frozen in the scale
invariant relational particle model is demonstrated to be an internal time in a
certain portion of the relational particle reformulation of Newtonian
mechanics. The semiclassical approach for these models is studied as an
emergent time resolution for these models, as are consistent records
approaches.Comment: Replaced with published version. Minor changes only; 1 reference
correcte
Decoupling the Producer-Consumer Problem From I/O Automata in Link-Level Acknowledgements
Metamorphic epistemologies and IPv4 have garnered great interest from both security experts and theorists in the last several years. Given the current status of probabilistic mod- els, steganographers shockingly desire the construction of digital-to-analog converters, demonstrates the important importance of operating systems. Matress, our new framework for gigabit switches, is the solution to all of these problems. This might seem perverse but is derived from known results
- …
