21 research outputs found

    Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds

    Get PDF
    Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D) hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types

    Zinc supplementation in pediatric practice

    No full text
    Scientific Knowledge about the essentiality of zinc in human health and diseases is emerging. Children are more prone to infectious diseases like diarrhoea, pneumonia, common cold and sepsis that lead to enormous deaths in the developing world. Zinc is mainly required for the maturation of B and T cells and its deficiency adversely affects the growth and functions of immune cells leading to impaired immune functions and increased susceptibility to infection. This review makes a summary of the effects of zinc supplementation in diarrhoea, common cold focusing more on the future perspective of zinc in sepsis

    Uniqueness and Stability Results on Non-local Stochastic Random Impulsive Integro-Differential Equations

    Full text link
    The paper is concerned with stochastic random impulsive integro-differential equations with non-local conditions. The sufficient conditions guarantees uniqueness of mild solution derived using Banach fixed point theorem. Stability of the solution is derived by incorporating Banach fixed point theorem with certain inequality techniques

    Modified low cost SNP genotyping technique using cycle threshold (Ct) & melting temperature (Tm) values in allele specific real-time PCR

    No full text
    Background & objectives: Genotyping has now become one of the major diagnostic means for almost all diseases. Among the advanced techniques that are used to study single nucleotide polymorphisms (SNPs), only a few are applicable for routine disease diagnosis. Their applicability mainly depends on three factors: cost, time, and accuracy. The primary objective of this study was to propose allele-specific real-time PCR as a rapid, low cost and simple genotyping method for routine diagnostics. Methods: Two SNPs, rs3014866 and rs2149356 were analysed using allele-specific real-time PCR. The polymerase chain reaction was carried out using RealQ PCR master mix containing SYBR Green DNA I dye followed by melt curve analysis. The results were validated by agarose gel electrophoresis and DNA sequencing. Results: The allelic discrimination and zygosity of the two SNPs were assessed by combined cycle threshold (Ct) and melting temperature (T m ) values. Variations in Ct and T m values among the two alleles were observed in both rs3014866 (Ct: C allele - 24±1, T allele - 27±1; T m : C allele - 82.5±0.3, T allele - 86.3±0.2) and rs2149356 (Ct: C allele - 24±1, A allele - 26±1; T m : C allele - 79.4±0.2, A allele - 80.4±0.3). Based on the variations, homozygous and heterozygous alleles were detected. Agarose gel electrophoresis and DNA sequencing also confirmed the allelic variation and zygosity observed in real-time PCR. Interpretation & conclusions: In diagnostic settings where a large number of samples are analysed daily, allele-specific real-time PCR assay may serve as a simple, low cost and efficient method of genotyping
    corecore