497 research outputs found
Photons uncertainty solves Einstein-Podolsky-Rosen paradox
Einstein, Podolsky and Rosen (EPR) pointed out that the quantum-mechanical
description of "physical reality" implied an unphysical, instantaneous action
between distant measurements. To avoid such an action at a distance, EPR
concluded that Quantum Mechanics had to be incomplete. However, its extensions
involving additional "hidden variables", allowing for the recovery of
determinism and locality, have been disproved experimentally (Bell's theorem).
Here, I present an opposite solution of the paradox based on the greater
indeterminism of the modern Quantum Field Theory (QFT) description of Particle
Physics, that prevents the preparation of any state having a definite number of
particles. The resulting uncertainty in photons radiation has interesting
consequences in Quantum Information Theory (e.g. cryptography and
teleportation). Moreover, since it allows for less elements of EPR physical
reality than the old non-relativistic Quantum Mechanics, QFT satisfies the EPR
condition of completeness without the need of hidden variables. The residual
physical reality does never violate locality, thus the unique objective proof
of "quantum nonlocality" is removed in an interpretation-independent way. On
the other hand, the supposed nonlocality of the EPR correlations turns out to
be a problem of the interpretation of the theory. If we do not rely on hidden
variables or new physics beyond QFT, the unique viable interpretation is a
minimal statistical one, that preserves locality and Lorentz symmetry.Comment: Published version, with updated referenc
Non-adiabatic effects in long-pulse mixed-field orientation of a linear polar molecule
We present a theoretical study of the impact of an electrostatic field
combined with non-resonant linearly polarized laser pulses on the rotational
dynamics of linear molecules. Within the rigid rotor approximation, we solve
the time-dependent Schr\"odinger equation for several field configurations.
Using the OCS molecule as prototype, the field-dressed dynamics is analyzed in
detail for experimentally accessible static field strengths and laser pulses.
Results for directional cosines are presented and compared to the predictions
of the adiabatic theory. We demonstrate that for prototypical field
configuration used in current mixed-field orientation experiments, the
molecular field dynamics is, in general, non-adiabatic, being mandatory a
time-dependent description of these systems. We investigate several field
regimes identifying the sources of non-adiabatic effects, and provide the field
parameters under which the adiabatic dynamics would be achieved.Comment: 16 pages, 16 figures. Submitted to Physical Review
Optimal Monitoring of Position in Nonlinear Quantum Systems
We discuss a model of repeated measurements of position in a quantum system
which is monitored for a finite amount of time with a finite instrumental
error. In this framework we recover the optimum monitoring of a harmonic
oscillator proposed in the case of an instantaneous collapse of the
wavefunction into an infinite-accuracy measurement result. We also establish
numerically the existence of an optimal measurement strategy in the case of a
nonlinear system. This optimal strategy is completely defined by the spectral
properties of the nonlinear system.Comment: 4 pages, REVTeX 3.0, 4 PostScript figure
The Quantum Mechanics of Hyperion
This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76,
186 (1998)] that the chaotic tumbling of the satellite Hyperion would become
non-classical within 20 years, but for the effects of environmental
decoherence. The dynamics of quantum and classical probability distributions
are compared for a satellite rotating perpendicular to its orbital plane,
driven by the gravitational gradient. The model is studied with and without
environmental decoherence. Without decoherence, the maximum quantum-classical
(QC) differences in its average angular momentum scale as hbar^{2/3} for
chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC
differences for a macroscopic object like Hyperion. The quantum probability
distributions do not approach their classical limit smoothly, having an
extremely fine oscillatory structure superimposed on the smooth classical
background. For a macroscopic object, this oscillatory structure is too fine to
be resolved by any realistic measurement. Either a small amount of smoothing
(due to the finite resolution of the apparatus) or a very small amount of
environmental decoherence is sufficient ensure the classical limit. Under
decoherence, the QC differences in the probability distributions scale as
(hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that
decoherence is not essential to explain the classical behavior of macroscopic
bodies.Comment: 17 pages, 24 figure
Quantum Mechanics Another Way
Deformation quantization (sometimes called phase-space quantization) is a
formulation of quantum mechanics that is not usually taught to undergraduates.
It is formally quite similar to classical mechanics: ordinary functions on
phase space take the place of operators, but the functions are multiplied in an
exotic way, using the star product. Here we attempt a brief, pedagogical
discussion of deformation quantization, that is suitable for inclusion in an
undergraduate course.Comment: 14 pages, 3 figures, to be published in Eur. J. Phy
Invalidity of Classes of Approximated Hall Effect Calculations
In this comment, I point out a number of approximated derivations for the
effective equation of motion, now been applied to d-wave superconductors by
Kopnin and Volovik are invalid. The major error in those approximated
derivations is the inappropriate use of the relaxation time approximation in
force-force correlation functions, or in force balance equations, or in similar
variations. This approximation is wrong and unnecessary.Comment: final version, minor changes, to appear in Phys. Rev. Let
Conservation and entanglement of Hermite-Gaussian modes in parametric down-conversion
We show that the transfer of the angular spectrum of the pump beam to the
two-photon state in spontaneous parametric down-conversion enables the
generation of entangled Hermite-Gaussian modes. We derive an analytical
expression for the two-photon state in terms of these modes and show that there
are restrictions on both the parity and order of the down-converted
Hermite-Gaussian fields. Using these results, we show that the two-photon state
is indeed entangled in Hermite-Gaussian modes. We propose experimental methods
of creating maximally-entangled Bell states and non-maximally entangled pure
states of first order Hermite-Gaussian modes.Comment: 9 pages, 4 figures. Corrections made as per referee comments,
references updated. Submitted PR
Simple computer model for the quantum Zeno effect
This paper presents a simple model for repeated measurement of a quantum
system: the evolution of a free particle, simulated by discretising the
particle's position. This model is easily simulated by computer and provides a
useful arena to investigate the effects of measurement upon dynamics, in
particular the slowing of evolution due to measurement (the `quantum Zeno
effect'). The results of this simulation are discussed for two rather different
sorts of measurement process, both of which are (simplified forms of)
measurements used in previous simulations of position measurement. A number of
interesting results due to measurement are found, and the investigation casts
some light on previous disagreements about the presence or absence of the Zeno
effect.Comment: REVTeX; 12 pages including 11 figures; figures reformatted to be more
readable; some small changes made to the description of the mode
Two-dimensional electron scattering in regions of nonuniform spin-orbit coupling
We present a theoretical study of elastic spin-dependent electron scattering
caused by a nonuniform Rashba spin-orbit coupling strength. Using the
spin-generalized method of partial waves the scattering amplitude is exactly
derived for the case of a circular shape of scattering region. We found that
the polarization of the scattered waves are strongly anisotropic functions of
the scattering angle. This feature can be utilized to design a good
all-electric spin-polarizer. General properties of the scattering process are
also investigated in the high and low energy limits.Comment: 4 pages, 3 figure
- …