3,213 research outputs found

    Comment on `Supersymmetry, PT-symmetry and spectral bifurcation'

    Full text link
    We demonstrate that the recent paper by Abhinav and Panigrahi entitled `Supersymmetry, PT-symmetry and spectral bifurcation' [Ann.\ Phys.\ 325 (2010) 1198], which considers two different types of superpotentials for the PT-symmetric complexified Scarf II potential, fails to take into account the invariance under the exchange of its coupling parameters. As a result, they miss the important point that for unbroken PT-symmetry this potential indeed has two series of real energy eigenvalues, to which one can associate two different superpotentials. This fact was first pointed out by the present authors during the study of complex potentials having a complex sl(2)sl(2) potential algebra.Comment: 6 pages, no figure, published versio

    An update on PT-symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally-extended supersymmetric partners

    Full text link
    The PT\cal PT-symmetric complexified Scarf II potential V(x)= - V_1 \sech^{2}x + {\rm i} V_2 \sech x \tanh x, V1>0V_1>0 , V20V_{2}\neq 0 is revisited to study the interplay among its coupling parameters. The existence of an isolated real and positive energy level that has been recently identified as a spectral singularity or zero-width resonance is here demonstrated through the behaviour of the corresponding wavefunctions and some property of the associated pseudo-norms is pointed out. We also construct four different rationally-extended supersymmetric partners to V(x)V(x), which are PT\cal PT-symmetric or complex non-PT\cal PT-symmetric according to the coupling parameters range. A detailed study of one of these partners reveals that SUSY preserves the V(x)V(x) spectral singularity existence.Comment: 14 pages, no figure, substantial additions on spectral singularities, title change

    Diffusion of small light particles in a solvent of large massive molecules

    Get PDF
    We study diffusion of small light particles in a solvent which consists of large heavy particles. The intermolecular interactions are chosen to approximately mimic a water-sucrose (or water-polysaccharide) mixture. Both computer simulation and mode coupling theoretical (MCT) calculations have been performed for a solvent-to-solute size ratio five and for a large variation of the mass ratio, keeping the mass of the solute fixed. Even in the limit of large mass ratio the solute motion is found to remain surprisingly coupled to the solvent dynamics. Interestingly, at intermediate values of the mass ratio, the self-intermediate scattering function of the solute, F_{s}(k,t) (where k is the wavenumber and t the time), develops a stretching at long time which could be fitted to a stretched exponential function with a k-dependent exponent, \beta. For very large mass ratio, we find the existence of two stretched exponentials separated by a power law type plateau. The analysis of the trajectory shows the coexistence of both hopping and continuous motions for both the solute and the solvent particles. It is found that for mass ratio five, the MCT calculations of the self-diffusion underestimates the simulated value by about 20 %, which appears to be reasonable because the conventional form of MCT does not include the hopping mode. However, for larger mass ratio, MCT appears to breakdown more severely. The breakdown of the MCT for large mass ratio can be connected to a similar breakdown near the glass transition.Comment: RevTex4, 9 pages, 10 figure

    Simulation and theory of vibrational phase relaxation in the critical and supercritical nitrogen: Origin of observed anomalies

    Get PDF
    We present results of extensive computer simulations and theoretical analysis of vibrational phase relaxation of a nitrogen molecule along the critical isochore and also along the gas-liquid coexistence. The simulation includes all the different contributions [atom-atom (AA), vibration-rotation (VR) and resonant transfer] and their cross-correlations. Following Everitt and Skinner, we have included the vibrational coordinate (qq) dependence of the interatomic potential. It is found that the latter makes an important contribution. The principal important results are: (a) a crossover from a Lorentzian-type to a Gaussian line shape is observed as the critical point is approached along the isochore (from above), (b) the root mean square frequency fluctuation shows nonmonotonic dependence on the temperature along critical isochore, (c) along the coexistence line and the critical isochore the temperature dependent linewidth shows a divergence-like λ\lambda-shape behavior, and (d) the value of the critical exponents along the coexistence and along the isochore are obtained by fitting. The origin of the anomalous temperature dependence of linewidth can be traced to simultaneous occurrence of several factors, (i) the enhancement of negative cross-correlations between AA and VR contributions and (ii) the large density fluctuations as the critical point (CP) is approached. The former makes the decay faster so that local density fluctuations are probed on a femtosecond time scale. A mode coupling theory (MCT) analysis shows the slow decay of the enhanced density fluctuations near critical point. The MCT analysis demonstrates that the large enhancement of VR coupling near CP arises from the non-Gaussian behavior of density fluctuation and this enters through a nonzero value of the triplet direct correlation function.Comment: 35 pages, 15 figures, revtex4 (preprint form

    PT-symmetric non-polynomial oscillators and hyperbolic potential with two known real eigenvalues in a SUSY framework

    Full text link
    Extending the supersymmetric method proposed by Tkachuk to the complex domain, we obtain general expressions for superpotentials allowing generation of quasi-exactly solvable PT-symmetric potentials with two known real eigenvalues (the ground state and first-excited state energies). We construct examples, namely those of complexified non-polynomial oscillators and of a complexified hyperbolic potential, to demonstrate how our scheme works in practice. For the former we provide a connection with the sl(2) method, illustrating the comparative advantages of the supersymmetric one.Comment: 14 pages, LaTeX, no figur

    Quantum, noncommutative and MOND corrections to the entropic law of gravitation

    Get PDF
    Quantum and noncommutative corrections to the Newtonian law of inertia are considered in the general setting of Verlinde’s entropic force postulate. We demonstrate that the form for the modified Newtonian dynamics (MOND) emerges in a classical setting by seeking appropriate corrections in the entropy. We estimate the correction term by using concrete coherent states in the standard and generalized versions of Heisenberg’s uncertainty principle. Using Jackiw’s direct and analytic method, we compute the explicit wavefunctions for these states, producing minimal length as well as minimal products. Subsequently, we derive a further selection criterium restricting the free parameters in the model in providing a canonical formulation of the quantum corrected Newtonian law by setting up the Lagrangian and Hamiltonian for the system
    corecore