9,713 research outputs found
Efficient fluorescence collection from trapped ions with an integrated spherical mirror
Efficient collection of fluorescence from trapped ions is crucial for quantum
optics and quantum computing applications, specifically, for qubit state
detection and in generating single photons for ion-photon and remote ion
entanglement. In a typical setup, only a few per cent of ion fluorescence is
intercepted by the aperture of the imaging optics. We employ a simple metallic
spherical mirror integrated with a linear Paul ion trap to achieve photon
collection efficiency of at least 10% from a single Ba ion. An aspheric
corrector is used to reduce the aberrations caused by the mirror and achieve
high image quality.Comment: 5 pages and 4 figure
Experimental Bell Inequality Violation with an Atom and a Photon
We report the measurement of a Bell inequality violation with a single atom
and a single photon prepared in a probabilistic entangled state. This is the
first demonstration of such a violation with particles of different species.
The entanglement characterization of this hybrid system may also be useful in
quantum information applications.Comment: 4 pages, 2 figure
Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+
The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+
near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential
observation of parity non-conservation, and also as a clock transition for a
barium ion optical frequency standard. This transition also offers a direct
means of populating the metastable 5D3/2 state to measure the nuclear magnetic
octupole moment in the odd barium isotopes. Light from a diode-pumped, solid
state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this
transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The
frequency of the laser is stabilized to a high finesse Fabry Perot cavity at
1025 nm after being frequency doubled. Rabi oscillations on this transition
indicate a laser-ion coherence time of 3 ms, most likely limited by ambient
magnetic field fluctuations.Comment: 5 pages, 5 figure
Hyperfine and Optical Barium Ion Qubits
State preparation, qubit rotation, and high fidelity readout are demonstrated
for two separate \baseven qubit types. First, an optical qubit on the narrow
6S to 5D transition at 1.76 m is implemented. Then,
leveraging the techniques developed there for readout, a ground state hyperfine
qubit using the magnetically insensitive transition at 8 GHz is accomplished
Extreme Starlight Polarization in a Region with Highly Polarized Dust Emission
Galactic dust emission is polarized at unexpectedly high levels, as revealed
by Planck. The origin of the observed polarization fractions can
be identified by characterizing the properties of optical starlight
polarization in a region with maximally polarized dust emission. We measure the
R-band linear polarization of 22 stars in a region with a submillimeter
polarization fraction of . A subset of 6 stars is also measured in
the B, V and I bands to investigate the wavelength dependence of polarization.
We find that starlight is polarized at correspondingly high levels. Through
multiband polarimetry we find that the high polarization fractions are unlikely
to arise from unusual dust properties, such as enhanced grain alignment.
Instead, a favorable magnetic field geometry is the most likely explanation,
and is supported by observational probes of the magnetic field morphology. The
observed starlight polarization exceeds the classical upper limit of
%mag and is at least
as high as 13%mag that was inferred from a joint analysis of Planck
data, starlight polarization and reddening measurements. Thus, we confirm that
the intrinsic polarizing ability of dust grains at optical wavelengths has long
been underestimated.Comment: Accepted by A&AL, data to appear on CDS after publication. 6 page
Zero-Point cooling and low heating of trapped 111Cd+ ions
We report on ground state laser cooling of single 111Cd+ ions confined in
radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured
for two different trapping geometries and electrode materials, where no effort
was made to shield the electrodes from the atomic Cd source. The low measured
heating rates suggest that trapped 111Cd+ ions may be well-suited for
experiments involving quantum control of atomic motion, including applications
in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR
- …
