Galactic dust emission is polarized at unexpectedly high levels, as revealed
by Planck. The origin of the observed ≃20% polarization fractions can
be identified by characterizing the properties of optical starlight
polarization in a region with maximally polarized dust emission. We measure the
R-band linear polarization of 22 stars in a region with a submillimeter
polarization fraction of ≃20. A subset of 6 stars is also measured in
the B, V and I bands to investigate the wavelength dependence of polarization.
We find that starlight is polarized at correspondingly high levels. Through
multiband polarimetry we find that the high polarization fractions are unlikely
to arise from unusual dust properties, such as enhanced grain alignment.
Instead, a favorable magnetic field geometry is the most likely explanation,
and is supported by observational probes of the magnetic field morphology. The
observed starlight polarization exceeds the classical upper limit of
[pV/E(B−V)]max=9%mag−1 and is at least
as high as 13%mag−1 that was inferred from a joint analysis of Planck
data, starlight polarization and reddening measurements. Thus, we confirm that
the intrinsic polarizing ability of dust grains at optical wavelengths has long
been underestimated.Comment: Accepted by A&AL, data to appear on CDS after publication. 6 page