145 research outputs found
Exact solution of a many body problem with nearest and next-nearest neighbour interactions
Recently a partially solvable many-body problem with nearest and next-nearest
neighbour interactions is proposed [cond-mat/9904121]. We show that by adding a
suitably chosen momentum dependent nearest neighbour interaction, such a model
can be converted into an integrable system with Lax operator formulation and
related conserved quantities. We also solve the eigenvalue problem for the
model exactly and as a byproduct obtain some identities involving associated
Laguerre polynomials.Comment: Latex, 6 pages, no figur
Infrared Fixed Point Structure in Minimal Supersymmetric Standard Model with Baryon and Lepton Number Violation
We study in detail the renomalization group evolution of Yukawa couplings and
soft supersymmetry breaking trilinear couplings in the minimal supersymmetric
standard model with baryon and lepton number violation. We obtain the exact
solutions of these equations in a closed form, and then depict the infrared
fixed point structure of the third generation Yukawa couplings and the highest
generation baryon and lepton number violating couplings. Approximate analytical
solutions for these Yukawa couplings and baryon and lepton number violating
couplings, and the soft supersymmetry breaking couplings are obtained in terms
of their initial values at the unification scale. We then numerically study the
infrared fixed surfaces of the model, and illustrate the approach to the fixed
points.Comment: 16 pages REVTeX, figures embedded as epsfigs, replaced with version
to appear in Physical Review D, minor typographical errors eliminated and
references reordered, figures correcte
Nonminimal Supersymmetric Standard Model with Baryon and Lepton Number Violation
We carry out a comprehensive analysis of the nonminimal supersymmetric
standard model (NMSSM) with baryon and lepton number violation. We catalogue
the baryon and lepton number violating dimension four and five operators of the
model. We then study the renormalization group evolution and infrared stable
fixed points of the Yukawa couplings and the soft supersymmetry breaking
trilinear couplings of this model with baryon and lepton number (and R-parity)
violation involving the heaviest generations. We show analytically that in the
Yukawa sector of the NMSSM there is only one infrared stable fixed point. This
corresponds to a non-trivial fixed point for the top-, bottom-quark Yukawa
couplings and the violating coupling , and a trivial one
for all other couplings. All other possible fixed points are either unphysical
or unstable in the infrared region. We also carry out an analysis of the
renormalization group equations for the soft supersymmetry breaking trilinear
couplings, and determine the corresponding fixed points for these couplings. We
then study the quasi-fixed point behaviour, both of the third generation Yukawa
couplings and the baryon number violating coupling, and those of the soft
supersymmetry breaking trilinear couplings. From the analysis of the fixed
point behaviour, we obtain upper and lower bounds on the baryon number
violating coupling , as well as on the soft supersymmetry
breaking trilinear couplings. Our analysis shows that the infrared fixed point
behavior of NMSSM with baryon and lepton number violation is similar to that of
MSSM.Comment: 35 pages, Revtex, 6 eps fig
Infrared Quasi Fixed Point Structure in Extended Yukawa Sectors and Application to R-parity Violation
We investigate one-loop renormalization group evolutions of extended sectors
of Yukawa type couplings. It is shown that Landau Poles which usually provide
necessary low energy upper bounds that saturate quickly with increasing initial
value conditions, lead in some cases to the opposite behaviour: some of the low
energy couplings decrease and become vanishingly small for increasingly large
initial conditions. We write down the general criteria for this to happen in
typical situations, highlighting a concept of {\sl repulsive} quasi-fixed
points, and illustrate the case both within a two-Yukawa toy model as well as
in the minimal supersymmetric standard model with R-parity violation. In the
latter case we consider the theoretical upper bounds on the various couplings,
identifying regimes where are
dynamically suppressed due to the Landau Pole. We stress the importance of
considering a large number of couplings simultaneously. This leads altogether
to a phenomenologically interesting seesaw effect in the magnitudes of the
various R-parity violating couplings, complementing and in some cases improving
the existing limits.Comment: Latex, 33 pages, 6 figure
Anomalously large critical regions in power-law random matrix ensembles
We investigate numerically the power-law random matrix ensembles.
Wavefunctions are fractal up to a characteristic length whose logarithm
diverges asymmetrically with different exponents, 1 in the localized phase and
0.5 in the extended phase. The characteristic length is so anomalously large
that for macroscopic samples there exists a finite critical region, in which
this length is larger than the system size. The Green's functions decrease with
distance as a power law with an exponent related to the correlation dimension.Comment: RevTex, 4 pages, 4 eps figures. Final version to be published in
Phys. Rev. Let
Universality of low-energy scattering in (2+1) dimensions
We prove that, in (2+1) dimensions, the S-wave phase shift, , k
being the c.m. momentum, vanishes as either as . The constant is universal and .
This result is established first in the framework of the Schr\"odinger equation
for a large class of potentials, second for a massive field theory from proved
analyticity and unitarity, and, finally, we look at perturbation theory in
and study its relation to our non-perturbative result. The
remarkable fact here is that in n-th order the perturbative amplitude diverges
like as , while the full amplitude vanishes as . We show how these two facts can be reconciled.Comment: 23 pages, Late
Colour-singlet strangelets at finite temperature
Considering massless and quarks, and massive (150 MeV) quarks in
a bag with the bag pressure constant MeV, a colour-singlet
grand canonical partition function is constructed for temperatures
MeV. Then the stability of finite size strangelets is studied minimizing the
free energy as a function of the radius of the bag. The colour-singlet
restriction has several profound effects when compared to colour unprojected
case: (1) Now bulk energy per baryon is increased by about MeV making the
strange quark matter unbound. (2) The shell structures are more pronounced
(deeper). (3) Positions of the shell closure are shifted to lower -values,
the first deepest one occuring at , famous -particle ! (4) The shell
structure at vanishes only at MeV, though for higher
-values it happens so at MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from
first Autho
Theory of unitarity bounds and low energy form factors
We present a general formalism for deriving bounds on the shape parameters of
the weak and electromagnetic form factors using as input correlators calculated
from perturbative QCD, and exploiting analyticity and unitarity. The values
resulting from the symmetries of QCD at low energies or from lattice
calculations at special points inside the analyticity domain can beincluded in
an exact way. We write down the general solution of the corresponding Meiman
problem for an arbitrary number of interior constraints and the integral
equations that allow one to include the phase of the form factor along a part
of the unitarity cut. A formalism that includes the phase and some information
on the modulus along a part of the cut is also given. For illustration we
present constraints on the slope and curvature of the K_l3 scalar form factor
and discuss our findings in some detail. The techniques are useful for checking
the consistency of various inputs and for controlling the parameterizations of
the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version
accepted by EPJA in Tools section; sentences and figures improve
On the Divergence of Perturbation Theory. Steps Towards a Convergent Series
The mechanism underlying the divergence of perturbation theory is exposed.
This is done through a detailed study of the violation of the hypothesis of the
Dominated Convergence Theorem of Lebesgue using familiar techniques of Quantum
Field Theory. That theorem governs the validity (or lack of it) of the formal
manipulations done to generate the perturbative series in the functional
integral formalism. The aspects of the perturbative series that need to be
modified to obtain a convergent series are presented. Useful tools for a
practical implementation of these modifications are developed. Some resummation
methods are analyzed in the light of the above mentioned mechanism.Comment: 42 pages, Latex, 4 figure
Supersymmetric Many-particle Quantum Systems with Inverse-square Interactions
The development in the study of supersymmetric many-particle quantum systems
with inverse-square interactions is reviewed. The main emphasis is on quantum
systems with dynamical OSp(2|2) supersymmetry. Several results related to
exactly solved supersymmetric rational Calogero model, including shape
invariance, equivalence to a system of free superoscillators and non-uniqueness
in the construction of the Hamiltonian, are presented in some detail. This
review also includes a formulation of pseudo-hermitian supersymmetric quantum
systems with a special emphasis on rational Calogero model. There are quite a
few number of many-particle quantum systems with inverse-square interactions
which are not exactly solved for a complete set of states in spite of the
construction of infinitely many exact eigen functions and eigenvalues. The
Calogero-Marchioro model with dynamical SU(1,1|2) supersymmetry and a quantum
system related to short-range Dyson model belong to this class and certain
aspects of these models are reviewed. Several other related and important
developments are briefly summarized.Comment: LateX, 65 pages, Added Acknowledgment, Discussions and References,
Version to appear in Jouranl of Physics A: Mathematical and Theoretical
(Commissioned Topical Review Article
- …
