62 research outputs found

    Fuel Consumption In Forwarders

    Get PDF
    Forwarder fuel consumption was studied by examining a total of 27 forwarders under field conditions. Three datasets, representing different data acquisition methods, were used. In a field study, time and fuel consumption by work-element of two 20-21 tonne forwarders in final felling were recorded. In a questionnaire survey, daily data concerning fuel consumption, productivity and average extraction distance was provided on 18 forwarders, divided between final felling and thinning. Finally, accounting data on fuel consumption for 11 forwarders were obtained. In the field study, the fuel consumption varied between 8.3 to 15.7 l/PMH (productive machine hour) for different work elements. The total fuel consumption was 0.28-0.36 l/m3sub (solid under bark) at average extraction distances on 360-412 m for loads of sawlogs and 0.43-0.66 l/m3sub (458-514 m) for loads of pulpwood. 61-62% of that fuel was consumed during loading and driving during loading. The forwarders consumed 0.23-0.38 l/100 m driving and the difference was only 10% with and without load. In the questionnaire survey, the fuel consumption averaged 0.62 l/m3sub (sawlogs and pulpwood, 318 m average extraction distance) for final felling (16-20 tonne forwarders) and 0.92 l/m3sub (644 m) for thinning (11-14 tonnes). An exception was 2.5 tonne forwarders that consumed only 0.35-0.37 l/m3sub (120-180 m). 89% of the extracted volume in the accounting data was from thinnings and the fuel consumption was in average 0.67 l/m3sub (100-200 m) for 9 to11 tonne forwarders. More difficult terrain conditions, the use of tracks and wheel-chains and one more assortment in the questionnaire survey are the most probable reasons for higher fuel consumption than in the field study. At long extraction distances it is especially important to utilize the maximum load capacity to benefit low fuel consumption on m3 basis

    Torque required to twist and cut loose Scots pine stumps

    Get PDF
    Stump wood is a possible source of renewable energy, but before its potential as a fuel can be utilised to a high degree, new harvesting techniques should be developed to reduce the environmental impact (notably ground disturbance) of harvesting stumps. The forces required to lift and drag stumps out of the soil are known. In this study, two unknown and important parameters were addressed: the torque required to uproot stumps by twisting them and the torque required to cut lateral roots around stumps. A new, improved stump-twisting rig was designed and used in trials with 28 Scots pine (Pinus sylvestris) trees (breast-height diameter over bark, 153–427 mm). The measured torque requirements ranged from 10 to 50 kNm. Twisting stumps required more torque than cutting lateral roots around stumps and the required torque increased with increases in stump size. The results indicate that a wrist on a big feller-buncher, but not a conventional rotator used on forest machines, should be able to generate sufficient torque to cut the roots around stumps such as those used in this study

    Biofuel futures in road transport - A modeling analysis for Sweden

    Get PDF
    First and second generation biofuels are among few low-carbon alternatives for road transport that currently are commercially available or in an early commercialization phase. They are thus potential options for meeting climate targets in the medium term. For the case of Sweden, we investigate cost-efficient use of biofuels in road transport under system-wide CO2 reduction targets to 2050, and the effects of implementation of targets for an almost fossil-free road transport sector to 2030. We apply the bottom-up, optimization MARKAL_Sweden model, which covers the entire Swedish energy system including the transport sector. For CO2 reductions of 80% to 2050 in the Swedish energy system as a whole, the results of the main scenario show an annual growth rate for road transport biofuels of about 6% from 2010 to 2050, with biofuels accounting for 78% of road transport final energy use in 2050. The preferred biofuel choices are methanol and biomethane. When introducing additional fossil fuel phase-out policies in road transport (-80% to 2030), a doubling of the growth rate to 2030 is required and system CO2 abatement costs increases by 6% for the main scenario. Results imply that second generation biofuels, along with energy-efficient vehicle technologies such as plug-in hybrids, can be an important part of optimized system solutions meeting stringent medium-term climate targets

    Bioenergy futures in Sweden - system effects of CO2 reduction and fossil fuel phase-out policies

    No full text
    Bioenergy could contribute both to the reduction of greenhouse gases and to increased energy security, but the extent of this contribution strongly depends on the cost and potential of biomass resources. For Sweden, this study investigates how the implementation of policies for CO2 reduction and for phase out of fossil fuels in road transport affect the future utilization of biomass, in the stationary energy system and in the transport sector, and its price. The analysis is based on the bottom-up, optimization MARKAL_Sweden model, which includes a comprehensive representation of the national energy system. For the analysis, the biomass supply representation of MARKAL_Sweden is updated and improved by the use of, e.g., forestry forecasting modeling and through construction of detailed biomass supply curves. A time horizon up to 2050 is applied. The results indicate a potential for significantly higher use of bioenergy. In the main analysis scenario, in which CO2 reduction of 80% by 2050 is imposed on the Swedish energy system, the total bioenergy utilization increases by 63% by 2050 compared to 2010. The largest increase occurs in the transport sector, which by 2050 accounts for 43% of the total primary bioenergy use. The high demand and strong competition significantly increase biomass prices and lead to the utilization of higher cost biomass sources such as stumps and cultivated energy forest, as well as use of pulpwood resources for energy purposes

    A review of the effects of formaldehyde release from endodontic materials

    No full text
    Formaldehyde is present in most living cells and the environment. In dentistry, patients may be exposed to formaldehyde through the use of several endodontic materials (e.g. AH 26) and during formocresol pulpotomies. This review outlines how the human body reacts to formaldehyde exposure, how recent data has relooked at the issue of carcinogenicity and leukaemia associated with formaldehyde, and whether it is possible to quantify the amount of formaldehyde produced by endodontic cements. The review analyses the way formaldehyde is produced from epoxy resins and addresses the question of whether the amount of formaldehyde from endodontic cements is large enough to override the body's ability to deal with its own endogenous levels of formaldehyde and should the amount of formaldehyde produced be a concern

    Dressing the access cavity

    No full text
    • …
    corecore