581 research outputs found

    Multiple addition theorem for discrete and continuous nonlinear problems

    Full text link
    The addition relation for the Riemann theta functions and for its limits, which lead to the appearance of exponential functions in soliton type equations is discussed. The presented form of addition property resolves itself to the factorization of N-tuple product of the shifted functions and it seems to be useful for analysis of soliton type continuous and discrete processes in the N+1 space-time. A close relation with the natural generalization of bi- and tri-linear operators into multiple linear operators concludes the paper.Comment: 9 page

    A Rapid Dynamical Monte Carlo Algorithm for Glassy Systems

    Full text link
    In this paper we present a dynamical Monte Carlo algorithm which is applicable to systems satisfying a clustering condition: during the dynamical evolution the system is mostly trapped in deep local minima (as happens in glasses, pinning problems etc.). We compare the algorithm to the usual Monte Carlo algorithm, using as an example the Bernasconi model. In this model, a straightforward implementation of the algorithm gives an improvement of several orders of magnitude in computational speed with respect to a recent, already very efficient, implementation of the algorithm of Bortz, Kalos and Lebowitz.Comment: RevTex 7 pages + 4 figures (uuencoded) appended; LPS preprin

    Network synchronization: Optimal and Pessimal Scale-Free Topologies

    Full text link
    By employing a recently introduced optimization algorithm we explicitely design optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency towards disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting ``pessimal networks'' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex Networks 2007

    Tests of Basic Quantum Mechanics in Oscillation Experiments

    Get PDF
    According to standard quantum theory, the time evolution operator of a quantum system is independent of the state of the system. One can, however, consider systems in which this is not the case: the evolution operator may depend on the density operator itself. The presence of such modifications of quantum theory can be tested in long baseline oscillation experiments.Comment: 8 pages, LaTeX; no macros neede

    A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole

    Full text link
    Thermal Wightman functions of a massless scalar field are studied within the framework of a ``near horizon'' static background model of an extremal R-N black hole. This model is built up by using global Carter-like coordinates over an infinite set of Bertotti-Robinson submanifolds glued together. The analytical extendibility beyond the horizon is imposed as constraints on (thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It turns out that only the Bertotti-Robinson vacuum state, i.e. T=0T=0, satisfies the above requirement. Furthermore the extension of this state onto the whole manifold is proved to coincide exactly with the vacuum state in the global Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem for the Minkowski space-time in terms of Wightman functions holds with vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum restricted to a Bertotti-Robinson region, resulting a pure state there, has vanishing entropy despite of the presence of event horizons. Some comments on the real extreme R-N black hole are given

    Casimir effect due to a single boundary as a manifestation of the Weyl problem

    Full text link
    The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases the divergences can be eliminated by methods such as zeta-function regularization or through physical arguments (ultraviolet transparency of the boundary would provide a cutoff). Using the example of a massless scalar field theory with a single Dirichlet boundary we explore the relationship between such approaches, with the goal of better understanding the origin of the divergences. We are guided by the insight due to Dowker and Kennedy (1978) and Deutsch and Candelas (1979), that the divergences represent measurable effects that can be interpreted with the aid of the theory of the asymptotic distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having geometrical origin, and an "intrinsic" term that is independent of the cutoff. The Weyl terms make a measurable contribution to the physical situation even when regularization methods succeed in isolating the intrinsic part. Regularization methods fail when the Weyl terms and intrinsic parts of the Casimir effect cannot be clearly separated. Specifically, we demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of cutoff, and a non-geometrical intrinsic term. As by-products we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of the Dirichlet line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references added, version to be published in J. Phys.

    Neutrino masses in the Lepton Number Violating MSSM

    Full text link
    We consider the most general supersymmetric model with minimal particle content and an additional discrete Z_3 symmetry (instead of R-parity), which allows lepton number violating terms and results in non-zero Majorana neutrino masses. We investigate whether the currently measured values for lepton masses and mixing can be reproduced. We set up a framework in which Lagrangian parameters can be initialised without recourse to assumptions concerning trilinear or bilinear superpotential terms, CP-conservation or intergenerational mixing and analyse in detail the one loop corrections to the neutrino masses. We present scenarios in which the experimental data are reproduced and show the effect varying lepton number violating couplings has on the predicted atmospheric and solar mass^2 differences. We find that with bilinear lepton number violating couplings in the superpotential of the order 1 MeV the atmospheric mass scale can be reproduced. Certain trilinear superpotential couplings, usually, of the order of the electron Yukawa coupling can give rise to either atmospheric or solar mass scales and bilinear supersymmetry breaking terms of the order 0.1 GeV^2 can set the solar mass scale. Further details of our calculation, Lagrangian, Feynman rules and relevant generic loop diagrams, are presented in three Appendices.Comment: 48 pages, 7 figures, v2 references added, typos corrected, published versio

    On the Thermodynamics of Simple Non-Isentropic Perfect Fluids in General Relativity

    Full text link
    We examine the consistency of the thermodynamics of irrotational and non-isentropic perfect fluids complying with matter conservation by looking at the integrability conditions of the Gibbs-Duhem relation. We show that the latter is always integrable for fluids of the following types: (a) static, (b) isentropic (admits a barotropic equation of state), (c) the source of a spacetime for which r2r\ge 2, where rr is the dimension of the orbit of the isometry group. This consistency scheme is tested also in two large classes of known exact solutions for which r<2r< 2, in general: perfect fluid Szekeres solutions (classes I and II). In none of these cases, the Gibbs-Duhem relation is integrable, in general, though specific particular cases of Szekeres class II (all complying with r<2r<2) are identified for which the integrability of this relation can be achieved. We show that Szekeres class I solutions satisfy the integrability conditions only in two trivial cases, namely the spherically symmetric limiting case and the Friedman-Roberson-Walker (FRW) cosmology. Explicit forms of the state variables and equations of state linking them are given explicitly and discussed in relation to the FRW limits of the solutions. We show that fixing free parameters in these solutions by a formal identification with FRW parameters leads, in all cases examined, to unphysical temperature evolution laws, quite unrelated to those of their FRW limiting cosmologies.Comment: 29 pages, Plain.Te

    Anderson localization on the Cayley tree : multifractal statistics of the transmission at criticality and off criticality

    Full text link
    In contrast to finite dimensions where disordered systems display multifractal statistics only at criticality, the tree geometry induces multifractal statistics for disordered systems also off criticality. For the Anderson tight-binding localization model defined on a tree of branching ratio K=2 with NN generations, we consider the Miller-Derrida scattering geometry [J. Stat. Phys. 75, 357 (1994)], where an incoming wire is attached to the root of the tree, and where KNK^{N} outcoming wires are attached to the leaves of the tree. In terms of the KNK^{N} transmission amplitudes tjt_j, the total Landauer transmission is Tjtj2T \equiv \sum_j | t_j |^2, so that each channel jj is characterized by the weight wj=tj2/Tw_j=| t_j |^2/T. We numerically measure the typical multifractal singularity spectrum f(α)f(\alpha) of these weights as a function of the disorder strength WW and we obtain the following conclusions for its left-termination point α+(W)\alpha_+(W). In the delocalized phase W<WcW<W_c, α+(W)\alpha_+(W) is strictly positive α+(W)>0\alpha_+(W)>0 and is associated with a moment index q+(W)>1q_+(W)>1. At criticality, it vanishes α+(Wc)=0\alpha_+(W_c)=0 and is associated with the moment index q+(Wc)=1q_+(W_c)=1. In the localized phase W>WcW>W_c, α+(W)=0\alpha_+(W)=0 is associated with some moment index q+(W)<1q_+(W)<1. We discuss the similarities with the exact results concerning the multifractal properties of the Directed Polymer on the Cayley tree.Comment: v2=final version (16 pages

    The quantum state vector in phase space and Gabor's windowed Fourier transform

    Full text link
    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed `window state vector'. Here aspects of this construction are explored, with emphasis on the connection with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of window are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schr\"odinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and further references adde
    corecore