1,970 research outputs found

    Phonons in Nanocrystalline 57Fe

    Get PDF
    We measured the phonon density of states (DOS) of nanocrystalline Fe by resonant inelastic nuclear γ-ray scattering. The nanophase material shows large distortions in its phonon DOS. We attribute the high energy distortion to lifetime broadening. A damped harmonic oscillator model for the phonons provides a low quality factor, Qu, averaging about 5, but the longitudinal modes may have been broadened most. The nanocrystalline Fe also shows an enhancement in its phonon DOS at energies below 15 meV. The difference in vibrational entropy of the bulk and nanocrystalline Fe was small, owing to competing changes in the nanocrystalline phonon DOS at low and high energies

    Local Chemical Environments and the Phonon Partial Densities of States of 57Fe in 57Fe3Al

    Get PDF
    Inelastic nuclear resonant scattering spectra were measured on alloys of Fe3Al that were chemically disordered, partially ordered, and D03 ordered. The features in the phonon partial density of states of 57Fe were found to change systematically with chemical short-range order in the alloy. Changes in the phonon partial density of states were modeled successfully by assigning vibrational spectra to 57Fe atoms in different first-nearest-neighbor chemical environments

    Atom clusters and vibrational excitations in chemically-disordered Pt357Fe

    Get PDF
    Inelastic nuclear resonant scattering spectra of Fe-57 atoms were measured on crystalline alloys of Pt3Fe-57 that were chemically disordered, partially ordered, and L1(2) ordered. Phonon partial density of states curves for Fe-57 were obtained from these spectra. Upon disordering, about 10% of the spectral intensity underwent a distinct shift from 25 to 19 meV. This change in optical modes accounted for most of the change of the vibrational entropy of disordering contributed by Fe atoms, which was (+0.10 +/- 0.03) k(B) (Fe atom)(-1). Prospects for parametrizing the vibrational entropy with low-order cluster variables were assessed. To calculate the difference in vibrational entropy of the disordered and ordered alloys, the clusters must be large enough to account for the abundances of several of the atom configurations of the first-nearest-neighbor shell about the Fe-57 atoms

    Vibrational modes in nanocrystalline iron under high pressure

    Get PDF
    The phonon density of states (DOS) of nanocrystalline 57Fe was measured using nuclear resonant inelastic x-ray scattering (NRIXS) at pressures up to 28 GPa in a diamond anvil cell. The nanocrystalline material exhibited an enhancement in its DOS at low energies by a factor of 2.2. This enhancement persisted throughout the entire pressure range, although it was reduced to about 1.7 after decompression. The low-energy regions of the spectra were fitted to the function AEn, giving values of n close to 2 for both the bulk control sample and the nanocrystalline material, indicative of nearly three-dimensional vibrational dynamics. At higher energies, the van Hove singularities observed in both samples were coincident in energy and remained so at all pressures, indicating that the forces conjugate to the normal coordinates of the nanocrystalline materials are similar to the interatomic potentials of bulk crystals

    Single unconfined compression of cellular dense collagen scaffolds for cartilage and bone tissue engineering

    Get PDF
    Cell seeded collagen matrix scaffolds have been extensively evaluated recently as potential systems for de-novo tissue regeneration and repair for a variety of tissue types. While collagen gels are biologically excellent as starting point scaffold materials, their use is limited by the lack of cohesive structure and inherently weak mechanical properties due to a high liquid content (>99%). An ingenious method of combining unconfined plastic compression (PC) with capillary action has shown that these scaffolds can be rapidly processed into tissue like structures, which can be immediately implanted into the host[1]. It has been shown that the rapid increase in fibrillar collagen density dramatically enhanced the mechanical properties of such scaffolds thus potentially eliminating the need for long term cellular action. This simple project investigated the effect of single unconfined compression on cartilage-cell seeded collagen matrices in terms of cell viability, proliferation and oxygen consumption

    Magnetism dependent phonon anomaly in LaFeAsO observed via inelastic x-ray scattering

    Get PDF
    The phonon dispersion was measured at room temperature along (0,0,L) in the tetragonal phase of LaFeAsO using inelastic x-ray scattering. Spin-polarized first-principles calculations imposing various types of antiferromagnetic order are in better agreement with the experimental results than nonmagnetic calculations, although the measurements were made well above the magnetic ordering temperature, T_N. Splitting observed between two A_{1g} phonon modes at 22 and 26 meV is only observed in spin-polarized calculations. Magneto-structural effects similar to those observed in the AFe_2As_2 materials are confirmed present in LaFeAsO. The presence of Fe-spin is necessary to find reasonable agreement of the calculations with the measured spectrum well above T_N. On-site Fe and As force constants show significant softening compared to nonmagnetic calculations, however an investigation of the real-space force constants associates the magnetoelastic coupling with a complex renormalization instead of softening of a specific pairwise force.Comment: 7 pages, 4 figure

    Coenzyme Q10 dose-escalation study in hemodialysis patients: safety, tolerability, and effect on oxidative stress.

    Get PDF
    BackgroundCoenzyme Q10 (CoQ10) supplementation improves mitochondrial coupling of respiration to oxidative phosphorylation, decreases superoxide production in endothelial cells, and may improve functional cardiac capacity in patients with congestive heart failure. There are no studies evaluating the safety, tolerability and efficacy of varying doses of CoQ10 in chronic hemodialysis patients, a population subject to increased oxidative stress.MethodsWe performed a dose escalation study to test the hypothesis that CoQ10 therapy is safe, well-tolerated, and improves biomarkers of oxidative stress in patients receiving hemodialysis therapy. Plasma concentrations of F2-isoprostanes and isofurans were measured to assess systemic oxidative stress and plasma CoQ10 concentrations were measured to determine dose, concentration and response relationships.ResultsFifteen of the 20 subjects completed the entire dose escalation sequence. Mean CoQ10 levels increased in a linear fashion from 704 ± 286 ng/mL at baseline to 4033 ± 1637 ng/mL, and plasma isofuran concentrations decreased from 141 ± 67.5 pg/mL at baseline to 72.2 ± 37.5 pg/mL at the completion of the study (P = 0.003 vs. baseline and P < 0.001 for the effect of dose escalation on isofurans). Plasma F2-isoprostane concentrations did not change during the study.ConclusionsCoQ10 supplementation at doses as high as 1800 mg per day was safe in all subjects and well-tolerated in most. Short-term daily CoQ10 supplementation decreased plasma isofuran concentrations in a dose dependent manner. CoQ10 supplementation may improve mitochondrial function and decrease oxidative stress in patients receiving hemodialysis.Trial registrationThis clinical trial was registered on clinicaltrials.gov [NCT00908297] on May 21, 2009

    CALYPSO: Private Data Management for Decentralized Ledgers

    Get PDF
    Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs. Calypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees
    corecore