1,883 research outputs found

    MiniBooNE and a (CP)^2 = -1 sterile neutrino

    Full text link
    It has been taken as granted that the observation of two independent mass-squared differences necessarily fixes the number of underlying mass eigenstates as three, and that the addition of a sterile neutrino provides an additional mass-squared difference. The purpose of this Letter is to argue that if one considers a sterile neutrino component that belongs to the (CP)^2 = - 1 sector, then both of the stated claims are false. We also outline how the results reported here, when combined with the forthcoming MiniBooNE data and other experiments, can help settle the issue of the CP properties of the sterile neutrino; if such a component does indeed exist.Comment: Mod. Phys. Lett. A (in press, 8 pages

    Neutrino oscillations with disentanglement of a neutrino from its partners

    Full text link
    We bring attention to the fact that in order to understand existing data on neutrino oscillations, and to design future experiments, it is imperative to appreciate the role of quantum entanglement. Once this is accounted for, the resulting energy-momentum conserving phenomenology requires a single new parameter related to disentanglement of a neutrino from its partners. This parameter may not be CP symmetric. We illustrate the new ideas, with potentially measurable effects, in the context of a novel experiment recently proposed by Gavrin, Gorbachev, Veretenkin, and Cleveland. The strongest impact of our ideas is on the resolution of various anomalies in neutrino oscillations and on neutrino propagation in astrophysical environments.Comment: 6 page

    Interplay of gravitation and linear superposition of different mass eigenstates

    Get PDF
    The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein's theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernovae, and certain atomic systems is briefly discussed

    Relatedness Measures to Aid the Transfer of Building Blocks among Multiple Tasks

    Full text link
    Multitask Learning is a learning paradigm that deals with multiple different tasks in parallel and transfers knowledge among them. XOF, a Learning Classifier System using tree-based programs to encode building blocks (meta-features), constructs and collects features with rich discriminative information for classification tasks in an observed list. This paper seeks to facilitate the automation of feature transferring in between tasks by utilising the observed list. We hypothesise that the best discriminative features of a classification task carry its characteristics. Therefore, the relatedness between any two tasks can be estimated by comparing their most appropriate patterns. We propose a multiple-XOF system, called mXOF, that can dynamically adapt feature transfer among XOFs. This system utilises the observed list to estimate the task relatedness. This method enables the automation of transferring features. In terms of knowledge discovery, the resemblance estimation provides insightful relations among multiple data. We experimented mXOF on various scenarios, e.g. representative Hierarchical Boolean problems, classification of distinct classes in the UCI Zoo dataset, and unrelated tasks, to validate its abilities of automatic knowledge-transfer and estimating task relatedness. Results show that mXOF can estimate the relatedness reasonably between multiple tasks to aid the learning performance with the dynamic feature transferring.Comment: accepted by The Genetic and Evolutionary Computation Conference (GECCO 2020

    Exotic Low Density Fermion States in the Two Measures Field Theory: Neutrino Dark Energy

    Full text link
    We study a new field theory effect in the cosmological context in the Two Measures Field Theory (TMT). TMT is an alternative gravity and matter field theory where the gravitational interaction of fermionic matter is reduced to that of General Relativity when the energy density of the fermion matter is much larger than the dark energy density. In this case also the 5-th force problem is solved automatically. In the opposite limit, where the magnitudes of fermionic energy density and scalar field dark energy density become comparable, nonrelativistic fermions can participate in the cosmological expansion in a very unusual manner. Some of the features of such states in a toy model of the late time universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos: neutrino mass increases as m ~ a^{3/2}; the neutrino gas equation-of-state approaches w=-1, i.e. neutrinos behave as a sort of dark energy; the total (scalar field + neutrino) equation-of-state also approaches w=-1; the total energy density of such universe is less than it would be in the universe filled with the scalar field alone. An analytic solution is presented. A domain structure of the dark energy seems to be possible. We speculate that decays of the CLEP state neutrinos may be both an origin of cosmic rays and responsible for a late super-acceleration of the universe. In this sense the CLEP states exhibit simultaneously new physics at very low densities and for very high particle masses.Comment: 47 pages, accepted for publication in Int.J.Mod.Phys.

    Majorana-Like (j,0)+(0,j) Representation Spaces: Construction and Physical Interpretation

    Full text link
    We present a formalism that extends the Majorana-construction to arbitrary spin (j,0)+(0,j) representation spaces. For the example case of spin-1, a wave equation satisfied by the Majorana-like (1,0)+(0,1) spinors is constructed and its physical content explored. The (j,0)+(0,j) Majorana-construct is found to possess an unusual classical and quantum field theoretic structure. Relevance of our formalism to parity violation, hadronic phenomenologies, and grand unified field theories is briefly pointed out.Comment: Replaced because some people were having trouble TeXing the old version. No changes implemente

    The quadratic spinor Lagrangian, axial torsion current, and generalizations

    Get PDF
    We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds a unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field (Weyl, Majorana, flagpole, or flag-dipole spinor fields) yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion 1-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.Comment: 9 pages, RevTeX, to be published in Int.J.Mod.Phys.D (2007
    • …
    corecore