142 research outputs found

    Applications of the Mellin-Barnes integral representation

    Get PDF
    We apply the Mellin-Barnes integral representation to several situations of interest in mathematical-physics. At the purely mathematical level, we derive useful asymptotic expansions of different zeta-functions and partition functions. These results are then employed in different topics of quantum field theory, which include the high-temperature expansion of the free energy of a scalar field in ultrastatic curved spacetime, the asymptotics of the pp-brane density of states, and an explicit approach to the asymptotics of the determinants that appear in string theory.Comment: 20 pages, LaTe

    Local Casimir Energies for a Thin Spherical Shell

    Full text link
    The local Casimir energy density for a massless scalar field associated with step-function potentials in a 3+1 dimensional spherical geometry is considered. The potential is chosen to be zero except in a shell of thickness ÎŽ\delta, where it has height hh, with the constraint hÎŽ=1h\delta=1. In the limit of zero thickness, an ideal ÎŽ\delta-function shell is recovered. The behavior of the energy density as the surface of the shell is approached is studied in both the strong and weak coupling regimes. The former case corresponds to the well-known Dirichlet shell limit. New results, which shed light on the nature of surface divergences and on the energy contained within the shell, are obtained in the weak coupling limit, and for a shell of finite thickness. In the case of zero thickness, the energy has a contribution not only from the local energy density, but from an energy term residing entirely on the surface. It is shown that the latter coincides with the integrated local energy density within the shell. We also study the dependence of local and global quantities on the conformal parameter. In particular new insight is provided on the reason for the divergence in the global Casimir energy in third order in the coupling.Comment: 16 pages, revtex 4, no figures. Major additions, clarifications, and corections, references adde

    Topology in 2D CP**(N-1) models on the lattice: a critical comparison of different cooling techniques

    Get PDF
    Two-dimensional CP**(N-1) models are used to compare the behavior of different cooling techniques on the lattice. Cooling is one of the most frequently used tools to study on the lattice the topological properties of the vacuum of a field theory. We show that different cooling methods behave in an equivalent way. To see this we apply the cooling methods on classical instantonic configurations and on configurations of the thermal equilibrium ensemble. We also calculate the topological susceptibility by using the cooling technique.Comment: 24 pages, 10 figures (from 16 eps files

    The heat kernel for deformed spheres

    Full text link
    We derive the asymptotic expansion of the heat kernel for a Laplace operator acting on deformed spheres. We calculate the coefficients of the heat kernel expansion on two- and three-dimensional deformed spheres as functions of deformation parameters. We find that under some deformation the conformal anomaly for free scalar fields on R4×S~2R^4\times \tilde S^2 and R6×S~2R^6\times \tilde S^2 is canceled.Comment: 10 pages, latex, no figure

    Zero-point energy of massless scalar fields in the presence of soft and semihard boundaries in D dimensions

    Get PDF
    The renormalized energy density of a massless scalar field defined in a D-dimensional flat spacetime is computed in the presence of "soft" and "semihard" boundaries, modeled by some smoothly increasing potential functions. The sign of the renormalized energy densities for these different confining situations is investigated. The dependence of this energy on DD for the cases of "hard" and "soft/semihard" boundaries are compared.Comment: 36 pages, LaTeX, 4 figure

    Phenomenological Equations of State for the Quark-Gluon Plasma

    Full text link
    Two phenomenological models describing an SU(N) quark-gluon plasma are presented. The first is obtained from high temperature expansions of the free energy of a massive gluon, while the second is derived by demanding color neutrality over a certain length scale. Each model has a single free parameter, exhibits behavior similar to lattice simulations over the range T_d - 5T_d, and has the correct blackbody behavior for large temperatures. The N = 2 deconfinement transition is second order in both models, while N = 3,4, and 5 are first order. Both models appear to have a smooth large-N limit. For N >= 4, it is shown that the trace of the Polyakov loop is insufficient to characterize the phase structure; the free energy is best described using the eigenvalues of the Polyakov loop. In both models, the confined phase is characterized by a mutual repulsion of Polyakov loop eigenvalues that makes the Polyakov loop expectation value zero. In the deconfined phase, the rotation of the eigenvalues in the complex plane towards 1 is responsible for the approach to the blackbody limit over the range T_d - 5T_d. The addition of massless quarks in SU(3) breaks Z(3) symmetry weakly and eliminates the deconfining phase transition. In contrast, a first-order phase transition persists with sufficiently heavy quarks.Comment: 22 pages, RevTeX, 9 eps file

    Finite Temperature and Density Effect on Symmetry Breaking by Wilson Loops

    Full text link
    A finite temperature and density effect of Wilson loop elements on non-simply connected space is investigated in the model suggested by Hosotani. Using one-loop calculations it is shown that the value of an "order parameter" does not shift as the temperature grows. We find that finite density effect is of much importance for restoration of symmetry.Comment: 11pages, no figur

    Surface Divergences and Boundary Energies in the Casimir Effect

    Full text link
    Although Casimir, or quantum vacuum, forces between distinct bodies, or self-stresses of individual bodies, have been calculated by a variety of different methods since 1948, they have always been plagued by divergences. Some of these divergences are associated with the volume, and so may be more or less unambiguously removed, while other divergences are associated with the surface. The interpretation of these has been quite controversial. Particularly mysterious is the contradiction between finite total self-energies and surface divergences in the local energy density. In this paper we clarify the role of surface divergences.Comment: 8 pages, 1 figure, submitted to proceedings of QFEXT0

    Fluctuations of quantum fields via zeta function regularization

    Get PDF
    Explicit expressions for the expectation values and the variances of some observables, which are bilinear quantities in the quantum fields on a D-dimensional manifold, are derived making use of zeta function regularization. It is found that the variance, related to the second functional variation of the effective action, requires a further regularization and that the relative regularized variance turns out to be 2/N, where N is the number of the fields, thus being independent on the dimension D. Some illustrating examples are worked through.Comment: 15 pages, latex, typographical mistakes correcte

    Quantum States, Thermodynamic Limits and Entropy in M-Theory

    Full text link
    We discuss the matching of the BPS part of the spectrum for (super)membrane, which gives the possibility of getting membrane's results via string calculations. In the small coupling limit of M--theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at large coupling constant is computed by considering M--theory on a manifold with topology T2×R9{\mathbb T}^2\times{\mathbb R}^9. We argue that the finite temperature partition functions (brane Laurent series for p≠1p \neq 1) associated with BPS p−p-brane spectrum can be analytically continued to well--defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p→0p \to 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.Comment: 7 pages, no figures, Revtex style. To be published in the Physical Review
    • 

    corecore