619 research outputs found

    Modelling and computer simulation of an insurance policy: A search for maximum profit

    Full text link
    We have developed a model for a life insurance policy. In this model the net gain is calculated by computer simulation for a particular type of lifetime distribution function. We observed that the net gain becomes maximum for a particular value of upper age of last premium. This paper is dedicated to Professor Dietrich Stauffer on the occassion of his 60-th birthday.Comment: This paper is dedicated to Prof. D. Stauffer on the occassion of his 60th birthday. Int. J. Mod. Phys. C (2003) (in press

    Nonequilibrium Phase Transition in the Kinetic Ising model: Critical Slowing Down and Specific-heat Singularity

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation and by solving numerically the mean field dynamic equation of motion for the average magnetisation. In both the cases, the Debye 'relaxation' behaviour of the dynamic order parameter has been observed and the 'relaxation time' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean field dynamic equation. The temperature variation of appropiately defined 'specific-heat' is studied by Monte Carlo simulation near the transition point. The specific-heat has been observed to diverge near the dynamic transition point.Comment: Revtex, Five encapsulated postscript files, submitted to Phys. Rev.

    Dynamic Response of Ising System to a Pulsed Field

    Full text link
    The dynamical response to a pulsed magnetic field has been studied here both using Monte Carlo simulation and by solving numerically the meanfield dynamical equation of motion for the Ising model. The ratio R_p of the response magnetisation half-width to the width of the external field pulse has been observed to diverge and pulse susceptibility \chi_p (ratio of the response magnetisation peak height and the pulse height) gives a peak near the order-disorder transition temperature T_c (for the unperturbed system). The Monte Carlo results for Ising system on square lattice show that R_p diverges at T_c, with the exponent νz2.0\nu z \cong 2.0, while \chi_p shows a peak at TceT_c^e, which is a function of the field pulse width δt\delta t. A finite size (in time) scaling analysis shows that Tce=Tc+C(δt)1/xT_c^e = T_c + C (\delta t)^{-1/x}, with x=νz2.0x = \nu z \cong 2.0. The meanfield results show that both the divergence of R and the peak in \chi_p occur at the meanfield transition temperature, while the peak height in χp(δt)y\chi_p \sim (\delta t)^y, y1y \cong 1 for small values of δt\delta t. These results also compare well with an approximate analytical solution of the meanfield equation of motion.Comment: Revtex, Eight encapsulated postscript figures, submitted to Phys. Rev.

    Nonequilibrium phase transition in the kinetic Ising model: Is transition point the maximum lossy point ?

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation (in two dimension) and by solving the meanfield dynamical equation of motion for the average magnetization. The temperature variations of hysteretic loss (loop area) and the dynamic correlation have been studied near the transition point. The transition point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the transition point. An analytical formulation has been developed to analyse the simulation results. A general relationship among hysteresis loop area, dynamic order parameter and dynamic correlation has also been developed.Comment: 8 pages Revtex and 4 Postscript figures; To appear in Phys. Rev.

    Length and time scale divergences at the magnetization-reversal transition in the Ising model

    Full text link
    The divergences of both the length and time scales, at the magnetization- reversal transition in Ising model under a pulsed field, have been studied in the linearized limit of the mean field theory. Both length and time scales are shown to diverge at the transition point and it has been checked that the nature of the time scale divergence agrees well with the result obtained from the numerical solution of the mean field equation of motion. Similar growths in length and time scales are also observed, as one approaches the transition point, using Monte Carlo simulations. However, these are not of the same nature as the mean field case. Nucleation theory provides a qualitative argument which explains the nature of the time scale growth. To study the nature of growth of the characteristic length scale, we have looked at the cluster size distribution of the reversed spin domains and defined a pseudo-correlation length which has been observed to grow at the phase boundary of the transition.Comment: 9 pages Latex, 3 postscript figure

    Dynamic Phase Transition in a Time-Dependent Ginzburg-Landau Model in an Oscillating Field

    Full text link
    The Ginzburg-Landau model below its critical temperature in a temporally oscillating external field is studied both theoretically and numerically. As the frequency or the amplitude of the external force is changed, a nonequilibrium phase transition is observed. This transition separates spatially uniform, symmetry-restoring oscillations from symmetry-breaking oscillations. Near the transition a perturbation theory is developed, and a switching phenomenon is found in the symmetry-broken phase. Our results confirm the equivalence of the present transition to that found in Monte Carlo simulations of kinetic Ising systems in oscillating fields, demonstrating that the nonequilibrium phase transition in both cases belongs to the universality class of the equilibrium Ising model in zero field. This conclusion is in agreement with symmetry arguments [G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett. 55, 2527 (1985)] and recent numerical results [G. Korniss, C.J. White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E (submitted)]. Furthermore, a theoretical result for the structure function of the local magnetization with thermal noise, based on the Ornstein-Zernike approximation, agrees well with numerical results in one dimension.Comment: 16 pp. RevTex, 9 embedded ps figure

    Cofinite Graphs and Their Profinite Completions

    Full text link
    We generalize the idea of cofinite groups, due to B. Hartley, [2]. First we define cofinite spaces in general. Then, as a special situation, we study cofinite graphs and their uniform completions.The idea of constructing a cofinite graph starts with defining a uniform topological graph Γ\Gamma, in an appropriate fashion. We endow abstract graphs with uniformities corresponding to separating filter bases of equivalence relations with finitely many equivalence classes over Γ\Gamma. It is established that for any cofinite graph there exists a unique cofinite completion

    Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field

    Full text link
    It has been well established that spatially extended, bistable systems that are driven by an oscillating field exhibit a nonequilibrium dynamic phase transition (DPT). The DPT occurs when the field frequency is on the order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs to the same universality class as the equilibrium phase transition of the Ising model in zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed that the DPT becomes discontinuous at temperatures below a tricritical point [M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on observations in dynamic Monte Carlo simulations of a multipeaked probability density for the dynamic order parameter and negative values of the fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the infinite-system limit the stochastic-resonance regime vanishes, and the continuous DPT should persist for all nonzero temperatures
    corecore