4,770 research outputs found

    Electric dipole moment of the electron in YbF molecule

    Full text link
    Ab initio calculation of the hyperfine, P-odd, and P,T-odd constants for the YbF molecule was performed with the help of the recently developed technique, which allows to take into account correlations and polarization in the outercore region. The ground state electronic wave function of the YbF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of ytterbium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Yb atom. For the isotropic hyperfine constant A, accuracy of our calculation is about 3% as compared to the experimental datum. The dipole constant Ad (which is much smaller in magnitude), though better than in all previous calculations, is still underestimated by almost 23%. Being corrected within a semiempirical approach for a perturbation of 4f-shell in the core of Yb due to the bond making, this error is reduced to 8%. Our value for the effective electric field on the unpaired electron is 4.9 a.u.=2.5E+10 V/cm.Comment: 7 pages, REVTE

    Electric dipole moment enhancement factor of thallium

    Full text link
    The goal of this work is to resolve the present controversy in the value of the EDM enhancement factor of Tl. We have carried out several calculations by different high-precision methods, studied previously omitted corrections, as well as tested our methodology on other parity conserving quantities. We find the EDM enhancement factor of Tl to be equal to -573(20). This value is 20% larger than the recently published result of Nataraj et al. [Phys. Rev. Lett. 106, 200403 (2011)], but agrees very well with several earlier results.Comment: 5 pages; v2: link to supplemental material adde

    Transport properties of a 3D topological insulator based on a strained high mobility HgTe film

    Get PDF
    We investigated the magnetotransport properties of strained, 80nm thick HgTe layers featuring a high mobility of mu =4x10^5 cm^2/Vs. By means of a top gate the Fermi-energy is tuned from the valence band through the Dirac type surface states into the conduction band. Magnetotransport measurements allow to disentangle the different contributions of conduction band electrons, holes and Dirac electrons to the conductivity. The results are are in line with previous claims that strained HgTe is a topological insulator with a bulk gap of ~15meV and gapless surface states.Comment: 11 pages (4 pages of main text, 6 pages of supplemental materials), 8 figure

    Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

    Full text link
    Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei, and on previously unmeasured neutral weak couplings

    Production of the Smallest QED Atom: True Muonium (mu^+ mu^-)

    Full text link
    The "true muonium" (mu^+ mu-) and "true tauonium" (tau^+ tau^-) bound states are not only the heaviest, but also the most compact pure QED systems. The rapid weak decay of the tau makes the observation of true tauonium difficult. However, as we show, the production and study of true muonium is possible at modern electron-positron colliders.Comment: 4 pages, ReVTeX, 4 eps figures; minor wording changes and reordering of a reference. Version accepted by Phys. Rev. Let

    Enhancement of the electric dipole moment of the electron in BaF molecule

    Full text link
    We report results of ab initio calculation of the spin-rotational Hamiltonian parameters including P- and P,T-odd terms for the BaF molecule. The ground state wave function of BaF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of barium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine constants the accuracy of this method is about 5-10%.Comment: 8 pages, REVTEX, report at II International Symposium on Symmetries in Subatomic Physics, Seattle 199

    The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma

    Get PDF
    The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells) structures of standing Alfvén waves with high azimuthal wave numbers <i>m</i>>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc

    Theory of Ferromagnetism in Doped Excitonic Condensates

    Full text link
    Nesting in a semimetal can lead to an excitonic insulator state with spontaneous coherence between conduction and valence bands and a gap for charged excitations. In this paper we present a theory of the ferromagnetic state that occurs when the density of electrons in the conduction band and holes in the valence band differ. We find an unexpectedly rich doping-field phase diagram and an unusual collective excitation spectrum that includes two gapless collective modes. We predict regions of doping and external field in which phase-separated condensates of electrons and holes with parallel spins and opposing spins coexist.Comment: 5 pages, 3 postscript file
    • …
    corecore