54,657 research outputs found
Accurate on-wafer power and harmonic measurements of mm-wave amplifiers and devices
A novel integrated test system that accurately measures on-wafer S-parameters, power levels, load-pull contours and harmonics over 1 to 50 GHz is presented. The system measures power and S-parameters with single contact measurements and integrated hardware. There are two keys to this system: first, the network analyzer samplers are used as frequency-selective power meters with large dynamic ranges; second, all measurements are vector-corrected to the device under test reference planes. The capabilities and accuracy were demonstrated by measuring the power at the fundamental frequency and four harmonic frequencies of a 50-GHz traveling wave amplifier and the load-pull contours of a MODFET at 30 GH
Exact clesed form of the return probability on the Bethe lattice
An exact closed form solution for the return probability of a random walk on
the Bethe lattice is given. The long-time asymptotic form confirms a previously
known expression. It is however shown that this exact result reduces to the
proper expression when the Bethe lattice degenerates on a line, unlike the
asymptotic result which is singular. This is shown to be an artefact of the
asymptotic expansion. The density of states is also calculated.Comment: 7 pages, RevTex 3.0, 2 figures available upon request from
[email protected], to be published in J.Phys.A Let
``Plug and play'' systems for quantum cryptography
We present a time-multiplexed interferometer based on Faraday mirrors, and
apply it to quantum key distribution. The interfering pulses follow exactly the
same spatial path, ensuring very high stability and self balancing. Use of
Faraday mirrors compensates automatically any birefringence effects and
polarization dependent losses in the transmitting fiber. First experimental
results show a fringe visibility of 0.9984 for a 23km-long interferometer,
based on installed telecom fibers.Comment: LaTex, 6 pages, with 2 Postscript figures, Submitted to Applied
Physics Letter
Optimal target search on a fast folding polymer chain with volume exchange
We study the search process of a target on a rapidly folding polymer (`DNA')
by an ensemble of particles (`proteins'), whose search combines 1D diffusion
along the chain, Levy type diffusion mediated by chain looping, and volume
exchange. A rich behavior of the search process is obtained with respect to the
physical parameters, in particular, for the optimal search.Comment: 4 pages, 3 figures, REVTe
Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy
This paper reports the solution of the equation of motion for a domain wall
in a magnetic material which exhibits high magneto-crystalline anisotropy.
Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion,
we solve the equation to give an analytical expression, which specifies the
domain wall position as a function of time. Taking parameters from a Co/Pt
multilayer system, we find good quantitative agreement between calculated and
experimentally determined wall velocities, and show that high field uniform
wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure
Quantized Electric Multipole Insulators
In this article we extend the celebrated Berry-phase formulation of electric
polarization in crystals to higher electric multipole moments. We determine the
necessary conditions under which, and minimal models in which, the quadrupole
and octupole moments are topologically quantized electromagnetic observables.
Such systems exhibit gapped boundaries that are themselves lower-dimensional
topological phases. Furthermore, they manifest topologically protected corner
states carrying fractional charge, i.e., fractionalization at the boundary of
the boundary. To characterize these new insulating phases of matter, we
introduce a new paradigm whereby `nested' Wilson loops give rise to a large
number of new topological invariants that have been previously overlooked. We
propose three realistic experimental implementations of this new topological
behavior that can be immediately tested.Comment: Main text: 9 pages, 6 figures. Supplementary Material: 37 pages, 15
figures. Submitted on Jul 25, 201
Loop Variables with Chan-Paton Factors
The Loop Variable method that has been developed for the U(1) bosonic open
string is generalized to include non-Abelian gauge invariance by incorporating
"Chan-Paton" gauge group indices. The scale transformation symmetry that was responsible for gauge invariance in the U(1) case
continues to be a symmetry. In addition there is a "rotation" symmetry. Both
symmetries crucially involve the massive modes. However it is plausible that
only a linear combination, which is the usual Yang-Mills transformation on
massless fields, has a smooth (world sheet) continuum limit. We also illustrate
how an infinite number of terms in the equation of motion in the cutoff theory
add up to give a term that has a smooth continuum limit, and thus contributes
to the low energy Yang-Mills equation of motion.Comment: One paragraph has been modified and the connection with the
Renormalization Group is explaine
- …
