54,657 research outputs found

    Accurate on-wafer power and harmonic measurements of mm-wave amplifiers and devices

    Get PDF
    A novel integrated test system that accurately measures on-wafer S-parameters, power levels, load-pull contours and harmonics over 1 to 50 GHz is presented. The system measures power and S-parameters with single contact measurements and integrated hardware. There are two keys to this system: first, the network analyzer samplers are used as frequency-selective power meters with large dynamic ranges; second, all measurements are vector-corrected to the device under test reference planes. The capabilities and accuracy were demonstrated by measuring the power at the fundamental frequency and four harmonic frequencies of a 50-GHz traveling wave amplifier and the load-pull contours of a MODFET at 30 GH

    Exact clesed form of the return probability on the Bethe lattice

    Full text link
    An exact closed form solution for the return probability of a random walk on the Bethe lattice is given. The long-time asymptotic form confirms a previously known expression. It is however shown that this exact result reduces to the proper expression when the Bethe lattice degenerates on a line, unlike the asymptotic result which is singular. This is shown to be an artefact of the asymptotic expansion. The density of states is also calculated.Comment: 7 pages, RevTex 3.0, 2 figures available upon request from [email protected], to be published in J.Phys.A Let

    ``Plug and play'' systems for quantum cryptography

    Get PDF
    We present a time-multiplexed interferometer based on Faraday mirrors, and apply it to quantum key distribution. The interfering pulses follow exactly the same spatial path, ensuring very high stability and self balancing. Use of Faraday mirrors compensates automatically any birefringence effects and polarization dependent losses in the transmitting fiber. First experimental results show a fringe visibility of 0.9984 for a 23km-long interferometer, based on installed telecom fibers.Comment: LaTex, 6 pages, with 2 Postscript figures, Submitted to Applied Physics Letter

    Optimal target search on a fast folding polymer chain with volume exchange

    Full text link
    We study the search process of a target on a rapidly folding polymer (`DNA') by an ensemble of particles (`proteins'), whose search combines 1D diffusion along the chain, Levy type diffusion mediated by chain looping, and volume exchange. A rich behavior of the search process is obtained with respect to the physical parameters, in particular, for the optimal search.Comment: 4 pages, 3 figures, REVTe

    Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy

    Full text link
    This paper reports the solution of the equation of motion for a domain wall in a magnetic material which exhibits high magneto-crystalline anisotropy. Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion, we solve the equation to give an analytical expression, which specifies the domain wall position as a function of time. Taking parameters from a Co/Pt multilayer system, we find good quantitative agreement between calculated and experimentally determined wall velocities, and show that high field uniform wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure

    Quantized Electric Multipole Insulators

    Full text link
    In this article we extend the celebrated Berry-phase formulation of electric polarization in crystals to higher electric multipole moments. We determine the necessary conditions under which, and minimal models in which, the quadrupole and octupole moments are topologically quantized electromagnetic observables. Such systems exhibit gapped boundaries that are themselves lower-dimensional topological phases. Furthermore, they manifest topologically protected corner states carrying fractional charge, i.e., fractionalization at the boundary of the boundary. To characterize these new insulating phases of matter, we introduce a new paradigm whereby `nested' Wilson loops give rise to a large number of new topological invariants that have been previously overlooked. We propose three realistic experimental implementations of this new topological behavior that can be immediately tested.Comment: Main text: 9 pages, 6 figures. Supplementary Material: 37 pages, 15 figures. Submitted on Jul 25, 201

    Loop Variables with Chan-Paton Factors

    Full text link
    The Loop Variable method that has been developed for the U(1) bosonic open string is generalized to include non-Abelian gauge invariance by incorporating "Chan-Paton" gauge group indices. The scale transformation symmetry k(s)k(s)λ(s)k(s) \to k(s) \lambda (s) that was responsible for gauge invariance in the U(1) case continues to be a symmetry. In addition there is a "rotation" symmetry. Both symmetries crucially involve the massive modes. However it is plausible that only a linear combination, which is the usual Yang-Mills transformation on massless fields, has a smooth (world sheet) continuum limit. We also illustrate how an infinite number of terms in the equation of motion in the cutoff theory add up to give a term that has a smooth continuum limit, and thus contributes to the low energy Yang-Mills equation of motion.Comment: One paragraph has been modified and the connection with the Renormalization Group is explaine
    corecore