1,970 research outputs found

    Plasmon assisted transport through disordered array of quantum wires

    Full text link
    Phononless plasmon assisted thermally activated transport through a long disordered array of finite length quantum wires is investigated analytically. Generically strong electron plasmon interaction in quantum wires results in a qualitative change of the temperature dependence of thermally activated resistance in comparison to phonon assisted transport. At high temperatures, the thermally activated resistance is determined by the Luttinger liquid interaction parameter of the wires.Comment: 7 pages, 1 figure, final version as publishe

    Evidence for Interlayer Electronic Coupling in Multilayer Epitaxial Graphene from Polarization Dependent Coherently Controlled Photocurrent Generation

    Full text link
    Most experimental studies to date of multilayer epitaxial graphene on C-face SiC have indicated that the electronic states of different layers are decoupled as a consequence of rotational stacking. We have measured the third order nonlinear tensor in epitaxial graphene as a novel approach to probe interlayer electronic coupling, by studying THz emission from coherently controlled photocurrents as a function of the optical pump and THz beam polarizations. We find that the polarization dependence of the coherently controlled THz emission expected from perfectly uncoupled layers, i.e. a single graphene sheet, is not observed. We hypothesize that the observed angular dependence arises from weak coupling between the layers; a model calculation of the angular dependence treating the multilayer structure as a stack of independent bilayers with variable interlayer coupling qualitatively reproduces the polarization dependence, providing evidence for coupling.Comment: submitted to Nano Letter

    Theoretical Aspects of the Fractional Quantum Hall Effect in Graphene

    Full text link
    We review the theoretical basis and understanding of electronic interactions in graphene Landau levels, in the limit of strong correlations. This limit occurs when inter-Landau-level excitations may be omitted because they belong to a high-energy sector, whereas the low-energy excitations only involve the same level, such that the kinetic energy (of the Landau level) is an unimportant constant. Two prominent effects emerge in this limit of strong electronic correlations: generalised quantum Hall ferromagnetic states that profit from the approximate four-fold spin-valley degeneracy of graphene's Landau levels and the fractional quantum Hall effect. Here, we discuss these effects in the framework of an SU(4)-symmetric theory, in comparison with available experimental observations.Comment: 12 pages, 3 figures; review for the proceedings of the Nobel Symposium on Graphene and Quantum Matte

    Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1)

    Full text link
    We present energy filtered electron emission spectromicroscopy with spatial and wave-vector resolution on few layer epitaxial graphene on SiC$(000-1) grown by furnace annealing. Low energy electron microscopy shows that more than 80% of the sample is covered by 2-3 graphene layers. C1s spectromicroscopy provides an independent measurement of the graphene thickness distribution map. The work function, measured by photoelectron emission microscopy (PEEM), varies across the surface from 4.34 to 4.50eV according to both the graphene thickness and the graphene-SiC interface chemical state. At least two SiC surface chemical states (i.e., two different SiC surface structures) are present at the graphene/SiC interface. Charge transfer occurs at each graphene/SiC interface. K-space PEEM gives 3D maps of the k_|| pi - pi* band dispersion in micron scale regions show that the Dirac point shifts as a function of graphene thickness. Novel Bragg diffraction of the Dirac cones via the superlattice formed by the commensurately rotated graphene sheets is observed. The experiments underline the importance of lateral and spectroscopic resolution on the scale of future electronic devices in order to precisely characterize the transport properties and band alignments

    Electronic Cooling via Interlayer Coulomb Coupling in Multilayer Epitaxial Graphene

    Full text link
    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied.Comment: 54 pages, 15 figures, uses documentclass{achemso}, M.T.M. and J.R.T. contributed equally to this wor

    Spectroscopic Measurement of Interlayer Screening in Multilayer Epitaxial Graphene

    No full text
    International audienceThe substrate-induced charge-density profile in carbon face epitaxial graphene is determined using nondegenerate ultrafast midinfrared pump-probe spectroscopy. Distinct zero crossings in the differential transmission spectra are used to identify the Fermi levels of layers within the multilayer stack. Probing within the transmission window of the SiC substrate, we find the Fermi levels of the first four heavily doped layers to be, respectively, 360, 215, 140, and 93 meV above the Dirac point. The charge screening length is determined to be one graphene layer, in good agreement with theoretical predictions

    Semiclassical theory for spatial density oscillations in fermionic systems

    Full text link
    We investigate the particle and kinetic-energy densities for a system of NN fermions bound in a local (mean-field) potential V(\bfr). We generalize a recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev.\ Lett. {\bf 100}, 200408 (2008)], in which the densities are calculated in terms of the closed orbits of the corresponding classical system, to D>1D>1 dimensions. We regularize the semiclassical results (i)(i) for the U(1) symmetry breaking occurring for spherical systems at r=0r=0 and (ii)(ii) near the classical turning points where the Friedel oscillations are predominant and well reproduced by the shortest orbit going from rr to the closest turning point and back. For systems with spherical symmetry, we show that there exist two types of oscillations which can be attributed to radial and non-radial orbits, respectively. The semiclassical theory is tested against exact quantum-mechanical calculations for a variety of model potentials. We find a very good overall numerical agreement between semiclassical and exact numerical densities even for moderate particle numbers NN. Using a "local virial theorem", shown to be valid (except for a small region around the classical turning points) for arbitrary local potentials, we can prove that the Thomas-Fermi functional τTF[ρ]\tau_{\text{TF}}[\rho] reproduces the oscillations in the quantum-mechanical densities to first order in the oscillating parts.Comment: LaTeX, 22pp, 15 figs, 1 table, to be published in Phys. Rev.

    Orbital Magnetism in Small Quantum Dots with Closed Shells

    Full text link
    It is found that various kind of shell structure which occurs at specific values of the magnetic field leads to the disappearance of the orbital magnetization for particular magic numbers of small quantum dots with an electron number A<30A < 30.Comment: 4 pages, latex file, four figures as postscript files, to appear at JETP Letters, December 199
    corecore