183 research outputs found
Suppression of \bbox{T_c} in superconducting amorphous wires
The suppression of the mean field temperature of the superconducting
transition, , in homogeneous amorphous wires is studied. We develop a
theory that gives in situations when the dynamically enhanced Coulomb
repulsion competes with the contact attraction. The theory accurately describes
recent experiments on --suppression in superconducting wires, after a
procedure that minimizes the role of nonuniversal mechanisms influencing
is applied.Comment: RevTeX, 4 pages, 3 figure
Effect of thermal phase fluctuations on the superfluid density of two-dimensional superconducting films
High precision measurements of the complex sheet conductivity of
superconducting Mo77Ge23 thin films have been made from 0.4 K through Tc. A
sharp drop in the inverse sheet inductance, 1/L(T), is observed at a
temperature, Tc, which lies below the mean-field transition temperature, Tco.
Just below Tc, the suppression of 1/L(T) below its mean-field value indicates
that longitudinal phase fluctuations have nearly their full classical
amplitude, but they disappear rapidly as T decreases. We argue that there is a
quantum crossover at about 0.94 Tco, below which classical phase fluctuations
are suppressed.Comment: 14 pages, 3 figures. Subm. to PR
Weak Localization Effect in Superconductors
We study the effect of weak localization on the transition temperatures of
superconductors using time-reversed scattered state pairs, and find that the
weak localization effect weakens electron-phonon interactions. With solving the
BCS equation, the calculated values for are in good agreement
with experimental data for various two- and three-dimensional disordered
superconductors. We also find that the critical sheet resistance for the
suppression of superconductivity in thin films does not satisfy the universal
behavior but depends on sample, in good agreement with experiments. but depends
on sample, in good agreement with experiments.Comment: 14 pages, Revtex, 5 ps figure
Dynamic Impedance of Two-Dimensional Superconducting Films Near the Superconducting Transition
The sheet impedances, Z(w,T), of several superconducting a-Mo77Ge23 films and
one In/InOx film have been measured in zero field using a two-coil mutual
inductance technique at frequencies from 100 Hz to 100 kHz. Z(w,T) is found to
have three contributions: the inductive superfluid, renormalized by nonvortex
phase fluctuations; conventional vortex-antivortex pairs, whose contribution
turns on very rapidly just below the usual Kosterlitz-Thouless-Berezinskii
unbinding temperature; and an anomalous contribution. The latter is
predominantly resistive, persists well below the KTB temperature, and is weakly
dependent on frequency down to remarkably low frequencies, at least 100 Hz. It
increases with T as e-U'(T)/kT, where the activation energy, U'(T), is about
half the energy to create a vortex-antivortex pair, indicating that the
frequency dependence is that of individual excitations, rather than critical
behavior.Comment: 10 pages, 10 figs; subm PR
Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition.The addition of a
parallel ground plane in proximity to the film changes the character of the
transition.Although the screening effects expected from "dirty-boson" theories
are not evident,there is evidence that the ground plane couples a certain type
of dissipation into the system,causing a dissipation-induced phase
transition.The dissipation due to the phase transition couples similarly into
quantum phase transition systems such as superconductor-insulator transitions
and Josephson junction arrays.Comment: 4 pages, 4 figure
True Superconductivity in a 2D "Superconducting-Insulating" System
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition. Based on low-field
data and I-V characteristics, we find evidence of a low temperature
Metal-to-Superconductor transition. This transition is characterized by
hysteretic magnetoresistance and discontinuities in the I-V curves. The
metallic phase just above the transition is different from the "Fermi Metal"
before superconductivity sets in.Comment: 3 pages, 4 figure
Infrared Studies of the Onset of Conductivity in Ultra-Thin Pb Films
In this paper we report the first experimental measurement of the infrared
conductivity of ultra-thin quenched-condensed Pb films. For dc sheet
resistances such that the ac conductance increases with
frequency but is in disagreement with the predictions of weak localization. We
attribute this behavior to the effects of an inhomogeneous granular structure
of these films, which is manifested at the very small probing scale of infrared
measurements. Our data are consistent with predictions of two-dimensional
percolation theory.Comment: Submitted to Physical Review Letter
Effect of granularity on the insulator-superconductor transition in ultrathin Bi films
We have studied the insulator-superconductor transition (IST) by tuning the
thickness in quench-condensed films. The resistive transitions of the
superconducting films are smooth and can be considered to represent
"homogeneous" films. The observation of an IST very close to the quantum
resistance for pairs, on several substrates supports
this idea. The relevant length scales here are the localization length, and the
coherence length. However, at the transition, the localization length is much
higher than the superconducting coherence length, contrary to expectation for a
"homogeneous" transition. This suggests the invalidity of a purely fermionic
model for the transition. Furthermore, the current-voltage characteristics of
the superconducting films are hysteretic, and show the films to be granular.
The relevant energy scales here are the Josephson coupling energy and the
charging energy. However, Josephson coupling energies () and the charging
energies () at the IST, they are found to obey the relation .
This is again contrary to expectation, for the IST in a granular or
inhomogeneous, system. Hence, a purely bosonic picture of the transition is
also inconsistent with our observations. We conclude that the IST observed in
our experiments may be either an intermediate case between the fermioinc and
bosonic mechanisms, or in a regime of charge and vortex dynamics for which a
quantitative analysis has not yet been done.Comment: accepted in Physical Review
Theoretical Study on Superconductivity in Boron-Doped Diamond
We consider superconductivity in boron (B) doped diamond using a simplified
model for the valence band of diamond. We treat the effects of substitutional
disorder of B ions by the coherent potential approximation (CPA) and those of
the attractive force between holes by the ladder approximation under the
assumption of instantaneous interaction with the Debye cutoff. We thereby
calculate the quasiparticle life time, the evolution of the single-particle
spectra due to doping, and the effect of disorder on the superconducting
critical temperature . We in particular compare our results with those for
supercell calculations to see the role of disorder, which turns out to be of
crucial importance to .Comment: 9 pages, 13 figures, submitted to J. Phys. Soc. Jpn., Errors in
embedded eps figure files have been correcte
The Upper Critical Field in Disordered Two-Dimensional Superconductors
We present calculations of the upper critical field in superconducting films
as a function of increasing disorder (as measured by the normal state
resistance per square). In contradiction to previous work, we find that there
is no anomalous low-temperature positive curvature in the upper critical field
as disorder is increased. We show that the previous prediction of this effect
is due to an unjustified analytical approximation of sums occuring in the
perturbative calculation. Our treatment includes both a careful analysis of
first-order perturbation theory, and a non-perturbative resummation technique.
No anomalous curvature is found in either case. We present our results in
graphical form.Comment: 11 pages, 8 figure
- …