183 research outputs found

    Suppression of \bbox{T_c} in superconducting amorphous wires

    Full text link
    The suppression of the mean field temperature of the superconducting transition, TcT_c, in homogeneous amorphous wires is studied. We develop a theory that gives TcT_c in situations when the dynamically enhanced Coulomb repulsion competes with the contact attraction. The theory accurately describes recent experiments on TcT_c--suppression in superconducting wires, after a procedure that minimizes the role of nonuniversal mechanisms influencing TcT_c is applied.Comment: RevTeX, 4 pages, 3 figure

    Effect of thermal phase fluctuations on the superfluid density of two-dimensional superconducting films

    Full text link
    High precision measurements of the complex sheet conductivity of superconducting Mo77Ge23 thin films have been made from 0.4 K through Tc. A sharp drop in the inverse sheet inductance, 1/L(T), is observed at a temperature, Tc, which lies below the mean-field transition temperature, Tco. Just below Tc, the suppression of 1/L(T) below its mean-field value indicates that longitudinal phase fluctuations have nearly their full classical amplitude, but they disappear rapidly as T decreases. We argue that there is a quantum crossover at about 0.94 Tco, below which classical phase fluctuations are suppressed.Comment: 14 pages, 3 figures. Subm. to PR

    Weak Localization Effect in Superconductors

    Full text link
    We study the effect of weak localization on the transition temperatures of superconductors using time-reversed scattered state pairs, and find that the weak localization effect weakens electron-phonon interactions. With solving the BCS TcT_{c} equation, the calculated values for TcT_c are in good agreement with experimental data for various two- and three-dimensional disordered superconductors. We also find that the critical sheet resistance for the suppression of superconductivity in thin films does not satisfy the universal behavior but depends on sample, in good agreement with experiments. but depends on sample, in good agreement with experiments.Comment: 14 pages, Revtex, 5 ps figure

    Dynamic Impedance of Two-Dimensional Superconducting Films Near the Superconducting Transition

    Full text link
    The sheet impedances, Z(w,T), of several superconducting a-Mo77Ge23 films and one In/InOx film have been measured in zero field using a two-coil mutual inductance technique at frequencies from 100 Hz to 100 kHz. Z(w,T) is found to have three contributions: the inductive superfluid, renormalized by nonvortex phase fluctuations; conventional vortex-antivortex pairs, whose contribution turns on very rapidly just below the usual Kosterlitz-Thouless-Berezinskii unbinding temperature; and an anomalous contribution. The latter is predominantly resistive, persists well below the KTB temperature, and is weakly dependent on frequency down to remarkably low frequencies, at least 100 Hz. It increases with T as e-U'(T)/kT, where the activation energy, U'(T), is about half the energy to create a vortex-antivortex pair, indicating that the frequency dependence is that of individual excitations, rather than critical behavior.Comment: 10 pages, 10 figs; subm PR

    Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment

    Full text link
    We present results on disordered amorphous films which are expected to undergo a field-tuned Superconductor-Insulator Transition.The addition of a parallel ground plane in proximity to the film changes the character of the transition.Although the screening effects expected from "dirty-boson" theories are not evident,there is evidence that the ground plane couples a certain type of dissipation into the system,causing a dissipation-induced phase transition.The dissipation due to the phase transition couples similarly into quantum phase transition systems such as superconductor-insulator transitions and Josephson junction arrays.Comment: 4 pages, 4 figure

    True Superconductivity in a 2D "Superconducting-Insulating" System

    Full text link
    We present results on disordered amorphous films which are expected to undergo a field-tuned Superconductor-Insulator Transition. Based on low-field data and I-V characteristics, we find evidence of a low temperature Metal-to-Superconductor transition. This transition is characterized by hysteretic magnetoresistance and discontinuities in the I-V curves. The metallic phase just above the transition is different from the "Fermi Metal" before superconductivity sets in.Comment: 3 pages, 4 figure

    Infrared Studies of the Onset of Conductivity in Ultra-Thin Pb Films

    Full text link
    In this paper we report the first experimental measurement of the infrared conductivity of ultra-thin quenched-condensed Pb films. For dc sheet resistances such that ωτ1\omega \tau \ll 1 the ac conductance increases with frequency but is in disagreement with the predictions of weak localization. We attribute this behavior to the effects of an inhomogeneous granular structure of these films, which is manifested at the very small probing scale of infrared measurements. Our data are consistent with predictions of two-dimensional percolation theory.Comment: Submitted to Physical Review Letter

    Effect of granularity on the insulator-superconductor transition in ultrathin Bi films

    Full text link
    We have studied the insulator-superconductor transition (IST) by tuning the thickness in quench-condensed BiBi films. The resistive transitions of the superconducting films are smooth and can be considered to represent "homogeneous" films. The observation of an IST very close to the quantum resistance for pairs, RNh/4e2R_{\Box}^N \sim h/4e^2 on several substrates supports this idea. The relevant length scales here are the localization length, and the coherence length. However, at the transition, the localization length is much higher than the superconducting coherence length, contrary to expectation for a "homogeneous" transition. This suggests the invalidity of a purely fermionic model for the transition. Furthermore, the current-voltage characteristics of the superconducting films are hysteretic, and show the films to be granular. The relevant energy scales here are the Josephson coupling energy and the charging energy. However, Josephson coupling energies (EJE_J) and the charging energies (EcE_c) at the IST, they are found to obey the relation EJ<EcE_J < E_c. This is again contrary to expectation, for the IST in a granular or inhomogeneous, system. Hence, a purely bosonic picture of the transition is also inconsistent with our observations. We conclude that the IST observed in our experiments may be either an intermediate case between the fermioinc and bosonic mechanisms, or in a regime of charge and vortex dynamics for which a quantitative analysis has not yet been done.Comment: accepted in Physical Review

    Theoretical Study on Superconductivity in Boron-Doped Diamond

    Full text link
    We consider superconductivity in boron (B) doped diamond using a simplified model for the valence band of diamond. We treat the effects of substitutional disorder of B ions by the coherent potential approximation (CPA) and those of the attractive force between holes by the ladder approximation under the assumption of instantaneous interaction with the Debye cutoff. We thereby calculate the quasiparticle life time, the evolution of the single-particle spectra due to doping, and the effect of disorder on the superconducting critical temperature TcT_c. We in particular compare our results with those for supercell calculations to see the role of disorder, which turns out to be of crucial importance to TcT_c.Comment: 9 pages, 13 figures, submitted to J. Phys. Soc. Jpn., Errors in embedded eps figure files have been correcte

    The Upper Critical Field in Disordered Two-Dimensional Superconductors

    Full text link
    We present calculations of the upper critical field in superconducting films as a function of increasing disorder (as measured by the normal state resistance per square). In contradiction to previous work, we find that there is no anomalous low-temperature positive curvature in the upper critical field as disorder is increased. We show that the previous prediction of this effect is due to an unjustified analytical approximation of sums occuring in the perturbative calculation. Our treatment includes both a careful analysis of first-order perturbation theory, and a non-perturbative resummation technique. No anomalous curvature is found in either case. We present our results in graphical form.Comment: 11 pages, 8 figure
    corecore