3,138 research outputs found

    U.S. Team Places Second In International Olympiad

    Get PDF

    Advising A Precollege Curriculum Project

    Get PDF

    The Algorithmic Way Of Life Is Best

    Get PDF

    Review Of The Future Of College Mathematics Edited By A. Ralston And G. S. Young

    Get PDF

    Some Unusual Locus Problems

    Get PDF

    CAMC Examines America

    Get PDF

    Inactivation of respiratory syncytial virus by zinc finger reactive compounds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectivity of retroviruses such as HIV-1 and MuLV can be abrogated by compounds targeting zinc finger motif in viral nucleocapsid protein (NC), involved in controlling the processivity of reverse transcription and virus infectivity. Although a member of a different viral family (<it>Pneumoviridae</it>), respiratory syncytial virus (RSV) contains a zinc finger protein M2-1 also involved in control of viral polymerase processivity. Given the functional similarity between the two proteins, it was possible that zinc finger-reactive compounds inactivating retroviruses would have a similar effect against RSV by targeting RSV M2-1 protein. Moreover, inactivation of RSV through modification of an internal protein could yield a safer whole virus vaccine than that produced by RSV inactivation with formalin which modifies surface proteins.</p> <p>Results</p> <p>Three compounds were evaluated for their ability to reduce RSV infectivity: 2,2'-dithiodipyridine (AT-2), tetraethylthiuram disulfide and tetramethylthiuram disulfide. All three were capable of inactivating RSV, with AT-2 being the most potent. The mechanism of action of AT-2 was analyzed and it was found that AT-2 treatment indeed results in the modification of RSV M2-1. Altered intramolecular disulfide bond formation in M2-1 protein of AT-2-treated RSV virions might have been responsible for abrogation of RSV infectivity. AT-2-inactivated RSV was found to be moderately immunogenic in the cotton rats <it>S.hispidus </it>and did not cause a vaccine-enhancement seen in animals vaccinated with formalin-inactivated RSV. Increasing immunogenicity of AT-2-inactivated RSV by adjuvant (Ribi), however, led to vaccine-enhanced disease.</p> <p>Conclusions</p> <p>This work presents evidence that compounds that inactivate retroviruses by targeting the zinc finger motif in their nucleocapsid proteins are also effective against RSV. AT-2-inactivated RSV vaccine is not strongly immunogenic in the absence of adjuvants. In the adjuvanted form, however, vaccine induces immunopathologic response. The mere preservation of surface antigens of RSV, therefore may not be sufficient to produce a highly-efficacious inactivated virus vaccine that does not lead to an atypical disease.</p

    Keane Leads US Olympiad Team To 1st Place Tie With USSR

    Get PDF

    An Interview With Albert W. Tucker

    Get PDF
    The mathematical career of Albert W. Tucker, Professor Emeritus at Princeton University, spans more than 50 years. Best known today for his work in mathematical programming and the theory of games (e.g., the Kuhn-Tucker theorem, Tucker tableaux, and the Prisoner\u27s Dilemma), he was also in his earlier years prominent in topology. Outstanding teacher, administrator and leader, he has been President of the MAA, Chairman of the Princeton Mathematics Department, and course instructor, thesis advisor or general mentor to scores of active mathematicians. He is also known for his views on mathematics education and the proper interplay between teaching and research. Tucker took an active interest in this interview, helping with both the planning and the editing. The interviewer, Professor Maurer, received his Ph.D. under Tucker in 1972 and teaches at Swarthmore College
    • …
    corecore