35 research outputs found

    O-glycan determinants regulate VWF trafficking to Weibel-Palade bodies

    Get PDF
    von Willebrand factor (VWF) undergoes complex posttranslational modification within endothelial cells (ECs) before secretion. This includes significant N- and O-linked glycosylation. Previous studies have demonstrated that changes in N-linked glycan structures significantly influence VWF biosynthesis. In contrast, although abnormalities in VWF O-linked glycans (OLGs) have been associated with enhanced VWF clearance, their effect on VWF biosynthesis remains poorly explored. Herein, we report a novel role for OLG determinants in regulating VWF biosynthesis and trafficking within ECs. We demonstrate that alterations in OLGs (notably reduced terminal sialylation) lead to activation of the A1 domain of VWF within EC. In the presence of altered OLG, VWF multimerization is reduced and Weibel-Palade body (WPB) formation significantly impaired. Consistently, the amount of VWF secreted from WPB after EC activation was significantly reduced in the context of O-glycosylation inhibition. Finally, altered OLG on VWF not only reduced the amount of VWF secreted after EC activation but also affected its hemostatic efficacy. Notably, VWF secreted after WPB exocytosis consisted predominantly of low molecular weight multimers, and the length of tethered VWF string formation on the surface of activated ECs was significantly reduced. In conclusion, our data therefore support the hypothesis that alterations in O-glycosylation pathways directly affect VWF trafficking within human EC. These findings are interesting given that previous studies have reported altered OLG on plasma VWF (notably increased T-antigen expression) in patients with von Willebrand disease.</p

    Bioactive and Elastic Emulsion Electrospun DegraPol Tubes Delivering IGF-1 for Tendon Rupture Repair

    Full text link
    Tendon injuries can result in two major drawbacks. Adhesions to the surrounding tissue may limit the range of motion, while fibrovascular scar formation can lead to poor biomechanical outcomes. Prosthetic devices may help to mitigate those problems. Emulsion electrospinning was used to develop a novel three-layer tube based on the polymer DegraPol (DP), with incorporated insulin-like growth factor-1 (IGF-1) in the middle layer. Scanning electron microscopy was utilized to assess the fiber diameter in IGF-1 containing pure DP meshes. Further characterization was performed with Fourier Transformed Infrared Spectroscopy, Differential Scanning Calorimetry, and water contact angle, as well as through the assessment of mechanical properties and release kinetics from ELISA, and the bioactivity of IGF-1 by qPCR of collagen I, ki67, and tenomodulin in rabbit Achilles tenocytes. The IGF-1-containing tubes exhibited a sustained release of the growth factor up to 4 days and showed bioactivity by significantly upregulated ki67 and tenomodulin gene expression. Moreover, they proved to be mechanically superior to pure DP tubes (significantly higher fracture strain, failure stress, and elastic modulus). The novel three-layer tubes intended to be applied over conventionally sutured tendons after a rupture may help accelerate the healing process. The release of IGF-1 stimulates proliferation and matrix synthesis of cells at the repair site. In addition, adhesion formation to surrounding tissue can be reduced due to the physical barrier

    High-Affinity Cu(I)-Chelator with Potential Anti-Tumorigenic Action-A Proof-of-Principle Experimental Study of Human H460 Tumors in the CAM Assay

    Full text link
    Human lung cancer ranks among the most frequently treated cancers worldwide. As copper appears critical to angiogenesis and tumor growth, selective removal of copper represents a promising strategy to restrict tumor growth. To this end, we explored the activity of the novel high-affinity membrane-permeant Cu(I) chelator PSP-2 featuring a low-zeptomolar dissociation constant. Using H460 human lung cancer cells, we generated small tumors on the chorioallantoic membrane of the chicken embryo (CAM assay) and studied the effects of topical PSP-2 application on their weight and vessel density after one week. We observed a significant angiosuppression along with a marked decrease in tumor weight under PSP-2 application compared to controls. Moreover, PSP-2 exposure resulted in lower ki67+ cell numbers at a low dose but increased cell count under a high dose. Moreover, HIF-1α+ cells were significantly reduced with low-dose PSP-2 exposure compared to high-dose and control. The total copper content was considerably lower in PSP-2 treated tumors, although statistically not significant. Altogether, PSP-2 shows promising potential as an anti-cancer drug. Nevertheless, further animal experiments and application to different tumor types are mandatory to support these initial findings, paving the way toward clinical trials. Keywords: CAM assay; angiogenesis; copper chelation; human lung cance

    Modification of silicone elastomers with Bioglass 45S5® increases in ovo tissue biointegration

    Full text link
    Silicone is an important material family used for various medical implants. It is biocompatible, but its bioinertness prevents cell attachment, and thus tissue biointegration of silicone implants. This often results in constrictive fibrosis and implant failure. Bioglass 45S5® (BG) could be a suitable material to alter the properties of silicone, render it bioactive and improve tissue integration. Therefore, BG micro- or nanoparticles were blended into medical-grade silicone and 2D as well as 3D structures of the resulting composites were analyzed in ovo by a chick chorioallantoic membrane (CAM) assay. The biomechanical properties of the composites were measured and the bioactivity of the composites was verified in simulated body fluid. The bioactivity of BG-containing composites was confirmed visually by the formation of hydroxyapatite through scanning electron microscopy as well as by infrared spectroscopy. BG stiffens as prepared non-porous composites by 13% and 36% for micro- and nanocomposites respectively. In particular, after implantation for 7 days, the Young's modulus had increased significantly from 1.20 ± 0.01 to 1.57 ± 0.03 MPa for microcomposites and 1.44 ± 0.03 to 1.69 ± 0.29 MPa to for nanocpmosites. Still, the materials remain highly elastic and are comparably soft. The incorporation of BG into silicone overcame the bioinertness of the pure polymer. Although the overall tissue integration was weak, it was significantly improved for BG-containing porous silicones (+72% for microcomposites) and even further enhanced for composites containing nanoparticles (+94%). These findings make BG a suitable material to improve silicone implant properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018

    Endothelial loss of Fzd5 stimulates PKC/Ets1-mediated transcription of Angpt2 and Flt1

    Get PDF
    Aims: Formation of a functional vascular system is essential and its formation is a highly regulated process initiated during embryogenesis, which continues to play important roles throughout life in both health and disease. In previous studies, Fzd5 was shown to be critically involved in this process and here we investigated the molecular mechanism by which endothelial loss of this receptor attenuates angiogenesis. Methods and results: Using short interference RNA-mediated loss-of-function assays, the function and mechanism of signaling via Fzd5 was studied in human endothelial cells (ECs). Our findings indicate that Fzd5 signaling promotes neovessel formation in vitro in a collagen matrix-based 3D co-culture of primary vascular cells. Silencing of Fzd5 reduced EC proliferation, as a result of G0/G1 cell cycle arrest, and decreased cell migration. Furthermore, Fzd5 knockdown resulted in enhanced expression of the factors Angpt2 and Flt1, which are mainly known for their destabilizing effects on the vasculature. In Fzd5-silenced ECs, Angpt2 and Flt1 upregulation was induced by enhanced PKC signaling, without the involvement of canonical Wnt signaling, non-canonical Wnt/Ca2+-mediated activation of NFAT, and non-canonical Wnt/PCP-mediated activation of JNK. We demonstrated that PKC-induced transcription of Angpt2 and Flt1 involved the transcription factor Ets1. Conclusions: The current study demonstrates a pro-angiogenic role of Fzd5, which was shown to be involved in endothelial tubule formation, cell cycle progression and migration, and partly does so by repression of PKC/Ets1-mediated transcription of Flt1 and Angpt2

    Automated segmentation and quantitative analysis of organelle morphology, localization and content using CellProfiler.

    Get PDF
    One of the most used and versatile methods to study number, dimensions, content and localization of secretory organelles is confocal microscopy analysis. However, considerable heterogeneity exists in the number, size and shape of secretory organelles that can be present in the cell. One thus needs to analyze large numbers of organelles for valid quantification. Properly evaluating these parameters requires an automated, unbiased method to process and quantitatively analyze microscopy data. Here, we describe two pipelines, run by CellProfiler software, called OrganelleProfiler and OrganelleContentProfiler. These pipelines were used on confocal images of endothelial colony forming cells (ECFCs), which contain unique secretory organelles called Weibel-Palade bodies (WPBs), and on early endosomes in ECFCs and human embryonic kidney 293T (HEK293T) cells. Results show that the pipelines can quantify the cell count, size, organelle count, organelle size, shape, relation to cells and nuclei, and distance to these objects in both endothelial and HEK293T cells. Additionally, the pipelines were used to measure the reduction in WPB size after disruption of the Golgi and to quantify the perinuclear clustering of WPBs after triggering of cAMP-mediated signaling pathways in ECFCs. Furthermore, the pipeline is able to quantify secondary signals located in or on the organelle or in the cytoplasm, such as the small WPB GTPase Rab27A. Cell profiler measurements were checked for validity using Fiji. To conclude, these pipelines provide a powerful, high-processing quantitative tool for the characterization of multiple cell and organelle types. These pipelines are freely available and easily editable for use on different cell types or organelles
    corecore