102 research outputs found
Membrane-Active Peptides and the Clustering of Anionic Lipids
AbstractThere is some overlap in the biological activities of cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs). We compared nine AMPs, seven CPPs, and a fusion peptide with regard to their ability to cluster anionic lipids in a mixture mimicking the cytoplasmic membrane of Gram-negative bacteria, as measured by differential scanning calorimetry. We also studied their bacteriostatic effect on several bacterial strains, and examined their conformational changes upon membrane binding using circular dichroism. A remarkable correlation was found between the net positive charge of the peptides and their capacity to induce anionic lipid clustering, which was independent of their secondary structure. Among the peptides studied, six AMPs and four CPPs were found to have strong anionic lipid clustering activity. These peptides also had bacteriostatic activity against several strains (particularly Gram-negative Escherichia coli) that are sensitive to lipid clustering agents. AMPs and CPPs that did not cluster anionic lipids were not toxic to E. coli. As shown previously for several types of AMPs, anionic lipid clustering likely contributes to the mechanism of antibacterial action of highly cationic CPPs. The same mechanism could explain the escape of CPPs from intracellular endosomes that are enriched with anionic lipids
Dynamics of ferrocene in molecular sieves probed by Mossbauer spectroscopy and nuclear resonant scattering
A detailed study on the slow dynamics of ferrocene in the unidimensional channels of the molecular sieves SSZ-24 and AlPO4-5 has been carried out, using Mössbauer spectroscopy (MS), nuclear forward scattering (NFS) and synchrotron radiation-based perturbed angular correlations (SRPAC). In both host systems, anisotropic rotational dynamics is observed above 100 K. For SSZ-24, this anisotropy persists even above the bulk melting temperature of ferrocene. Various theoretical models are exploited for the study of anisotropic discrete jump rotations for the first time. The experimental data can be described fairly well by a jump model that involves reorientations of the molecular axis on a cone mantle with an opening angle dependant on temperature
Nuclear forward scattering in particulate matter: dependence of lineshape on particle size distribution
In synchrotron Moessbauer spectroscopy, the nuclear exciton polariton
manifests itself in the lineshape of the spectra of nuclear forward scattering
(NFS) Fourier-transformed from time domain to frequency domain. This lineshape
is generally described by the convolution of two intensity factors. One of them
is Lorentzian related to free decay. We derived the expressions for the second
factor related to Frenkel exciton polariton effects at propagation of
synchrotron radiation in Moessbauer media. Parameters of this Frenkelian shape
depend on the spatial configuration of Moessbauer media. In a layer of uniform
thickness, this factor is found to be a simple hypergeometric function. Next,
we consider the particles spread over a 2D surface or diluted in non-Moessbauer
media to exclude an overlap of ray shadows by different particles. Deconvolving
the purely polaritonic component of linewidths is suggested as a simple
procedure sharpening the experimental NFS spectra in frequency domain. The
lineshapes in these sharpened spectra are theoretically expressed via the
parameters of the particle size distributions (PSD). Then, these parameters are
determined through least-squares fitting of the line shapes.Comment: 13 pages, 12 figure
- …