119 research outputs found
Random phase approximation for multi-band Hubbard models
We derive the random-phase approximation for spin excitations in general
multi-band Hubbard models, starting from a collinear ferromagnetic Hartree-Fock
ground state. The results are compared with those of a recently introduced
variational many-body approach to spin-waves in itinerant ferromagnets. As we
exemplify for Hubbard models with one and two bands, the two approaches lead to
qualitatively different results. The discrepancies can be traced back to the
fact that the Hartree-Fock theory fails to describe properly the local moments
which naturally arise in a correlated-electron theory.Comment: 25 pages, 2 figure
Hydrolysis of organic phosphorus in soil water suspensions after addition of phosphatase enzymes
Additions of enzymes involved in organic phosphorus (P) hydrolysis can be used to characterize the hydrolyzability of molybdate-unreactive P (MUP) in soil water extracts. Our aim was to test the feasibility of enzyme additions to soil water suspensions with respect to (1) suitable enzyme preparations and (2) recovery of molybdate-reactive P (MRP). To this end, we compared the substrate specificity of seven commercially available enzyme preparations (acid and alkaline phosphomonoesterase, phytase, and nuclease preparations) and optimized the assay conditions in microplates. We then measured MRP release after the addition of the enzymes to soil water suspensions and filtrates of two Swiss grassland soils (midland and alpine). In some cases, commercial preparations of the same enzyme differed in their specificity, presumably due to contamination with other enzymes, and also in their efficiency in soil suspensions. Addition of EDTA to the buffer was required to decrease sorption of released P in soil suspensions. Enzymatic release of P was consistently equal or higher in soil suspensions than in soil filtrates. However, also more dissolved MUP was present in soil suspensions than in filtrates, since the buffer interacted with the solid phase. Of the total dissolved MUP in soil suspensions, 94 and 61% were hydrolyzable in midland and alpine soil, respectively. More specifically, 60 and 17% of MUP were in nucleic acids, 6 and 39% in simple monoesters, and 28 and 5% in inositol hexakisphosphate in midland and alpine soil, respectively. Thus, we show that the characterization of hydrolyzable organic P in soil suspensions with hydrolytic enzyme preparations may be useful to better understand the availability of soil organic P to enzymatic hydrolysis, but that it requires soil-specific adaptation for optimum P recover
Inhomogeneous Gutzwiller approximation with random phase fluctuations for the Hubbard model
We present a detailed study of the time-dependent Gutzwiller approximation
for the Hubbard model. The formalism, labelled GA+RPA, allows us to compute
random-phase approximation-like (RPA) fluctuations on top of the Gutzwiller
approximation (GA). No restrictions are imposed on the charge and spin
configurations which makes the method suitable for the calculation of linear
excitations around symmetry-broken solutions. Well-behaved sum rules are obeyed
as in the Hartree-Fock (HF) plus RPA approach. Analytical results for a
two-site model and numerical results for charge-charge and current-current
dynamical correlation functions in one and two dimensions are compared with
exact and HF+RPA results, supporting the much better performance of GA+RPA with
respect to conventional HF+RPA theory.Comment: 14 pages, 6 figure
Mott transitions in correlated electron systems with orbital degrees of freedom
Mott metal-insulator transitions in an M-fold orbitally degenerate Hubbard
model are studied by means of a generalization of the linearized dynamical
mean-field theory. The method allows for an efficient and reliable
determination of the critical interaction U_c for any integer filling n and
different M at zero temperature. For half-filling a linear dependence of U_c on
M is found. Inclusion of the (full) Hund's rule exchange J results in a strong
reduction of U_c. The transition turns out to change qualitatively from
continuous for J=0 to discontinuous for any finite J
Increased availability of phosphorus after drying and rewetting of a grassland soil: processes and plant use
Aims: Drying and rewetting (DRW) often increases soil phosphorus (P) availability. Our aims were to elucidate underlying processes and assess potential plant uptake of released P. Methods: Using a grassland soil with low available and high microbial P as a model, we studied the contributions of microbial and physicochemical processes to P release by determining DRW effects on i) C:P ratios of nutrient pulses in fresh and sterilized soils, ii) aggregate stability and iii) P forms released upon soil dispersion. Use of the P pulse by maize was examined in a bioassay and a split-root experiment. Results: The strong P pulse after DRW was larger than that observed for C. Experiments with sterilized soil pointed to a non-microbial contribution to the pulse for P, but not for C. Aggregate disruption after DRW occurred due to slaking, and this released molybdate-reactive and -unreactive P. Maize benefitted from the P pulse only in the bioassay, i.e. when planted after the DRW cycle. Conclusions: The majority of C and P released upon DRW originated from the microbial biomass, but for P release, physicochemical processes were also important. In the field, the released P would only be available to drought-resistant plant
Influence of Spin Wave Excitations on the Ferromagnetic Phase Diagram in the Hubbard-Model
The subject of the present paper is the theoretical description of collective
electronic excitations, i.e. spin waves, in the Hubbard-model. Starting with
the widely used Random-Phase-Approximation, which combines Hartree-Fock theory
with the summation of the two-particle ladder, we extend the theory to a more
sophisticated single particle approximation, namely the
Spectral-Density-Ansatz. Doing so we have to introduce a `screened`
Coulomb-interaction rather than the bare Hubbard-interaction in order to obtain
physically reasonable spinwave dispersions. The discussion following the
technical procedure shows that comparison of standard RPA with our new
approximation reduces the occurrence of a ferromagnetic phase further with
respect to the phase-diagrams delivered by the single particle theories.Comment: 8 pages, 9 figures, RevTex4, accepted for publication in Phys. Rev.
Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping
In the present paper we propose a doubly orbitally degenerate narrow-band
model with correlated hopping. The peculiarity of the model is taking into
account the matrix element of electron-electron interaction which describes
intersite hoppings of electrons. In particular, this leads to the concentration
dependence of the effective hopping integral. The cases of the strong and weak
Hund's coupling are considered. By means of a generalized mean-field
approximation the single-particle Green function and quasiparticle energy
spectrum are calculated. Metal-insulator transition is studied in the model at
different integer values of the electron concentration. With the help of the
obtained energy spectrum we find energy gap width and criteria of
metal-insulator transition.Comment: minor revisions, published in Phys. Rev.
A Quantum Monte Carlo Method and Its Applications to Multi-Orbital Hubbard Models
We present a framework of an auxiliary field quantum Monte Carlo (QMC) method
for multi-orbital Hubbard models. Our formulation can be applied to a
Hamiltonian which includes terms for on-site Coulomb interaction for both
intra- and inter-orbitals, intra-site exchange interaction and energy
differences between orbitals. Based on our framework, we point out possible
ways to investigate various phase transitions such as metal-insulator, magnetic
and orbital order-disorder transitions without the minus sign problem. As an
application, a two-band model is investigated by the projection QMC method and
the ground state properties of this model are presented.Comment: 10 pages LaTeX including 2 PS figures, to appear in J.Phys.Soc.Jp
Driving Soils to Change: Tyre Particles Modulate Microbial-Mediated Soil Functions & Nutrient Status in Vegetable Crops
Driving Soils to Change: Tyre Particles Modulate Microbial-Mediated Soil Functions & Nutrient Status in Vegetable Crop
Phase diagram of orbital-selective Mott transitions at finite temperatures
Mott transitions in the two-orbital Hubbard model with different bandwidths
are investigated at finite temperatures. By means of the self-energy functional
approach, we discuss the stability of the intermediate phase with one orbital
localized and the other itinerant, which is caused by the orbital-selective
Mott transition (OSMT). It is shown that the OSMT realizes two different
coexistence regions at finite temperatures in accordance with the recent
results of Liebsch. We further find that the particularly interesting behavior
emerges around the special condition and J=0, which includes a new type
of the coexistence region with three distinct states. By systematically
changing the Hund coupling, we establish the global phase diagram to elucidate
the key role played by the Hund coupling on the Mott transitions.Comment: 4 pages, 6 figure
- …