164 research outputs found

    Time-Dependent Gutzwiller Theory for Multiband Hubbard Models

    Full text link
    Based on the variational Gutzwiller theory, we present a method for the computation of response functions for multiband Hubbard models with general local Coulomb interactions. The improvement over the conventional random-phase approximation is exemplified for an infinite-dimensional two-band Hubbard model where the incorporation of the local multiplet-structure leads to a much larger sensitivity of ferromagnetism on the Hund coupling. Our method can be implemented into LDA+Gutzwiller schemes and will therefore be an important tool for the computation of response functions for strongly correlated materials.Comment: 4 pages, 3 figure

    Random phase approximation for multi-band Hubbard models

    Full text link
    We derive the random-phase approximation for spin excitations in general multi-band Hubbard models, starting from a collinear ferromagnetic Hartree-Fock ground state. The results are compared with those of a recently introduced variational many-body approach to spin-waves in itinerant ferromagnets. As we exemplify for Hubbard models with one and two bands, the two approaches lead to qualitatively different results. The discrepancies can be traced back to the fact that the Hartree-Fock theory fails to describe properly the local moments which naturally arise in a correlated-electron theory.Comment: 25 pages, 2 figure

    Soil organic phosphorus and microbial community composition as affected by 26years of different management strategies

    Get PDF
    Agricultural management can affect soil organic matter chemistry and microbial community structure, but the relationship between the two is not well understood. We investigated the effect of crop rotation, tillage and stubble management on forms of soil phosphorus (P) as determined by solution 31P nuclear magnetic resonance spectroscopy and microbial community composition using fatty acid methyl ester analysis in a long-term field experiment (26years) on a Chromic Luvisol in New South Wales, Australia. An increase in soil organic carbon, nitrogen and phosphorus compared to the beginning of the experiment was found in a rotation of wheat and subterranean clover with direct drill and mulching, while stubble burning in wheat-lupin and wheat-wheat rotations led to soil organic matter losses. Microbial biomass was highest in the treatment with maximum organic matter contents. The same soil P forms were detected in all samples, but in different amounts. Changes in organic P occurred mainly in the monoester region, with an increase or decrease in peaks that were present also in the sample taken before the beginning of the experiment in 1979. The microbial community composition differed between the five treatments and was affected primarily by crop rotations and to a lesser degree by tillage. A linkage between soil P forms and signature fatty acids was tentatively established, but needs to be verified in further studie

    Inhomogeneous Gutzwiller approximation with random phase fluctuations for the Hubbard model

    Full text link
    We present a detailed study of the time-dependent Gutzwiller approximation for the Hubbard model. The formalism, labelled GA+RPA, allows us to compute random-phase approximation-like (RPA) fluctuations on top of the Gutzwiller approximation (GA). No restrictions are imposed on the charge and spin configurations which makes the method suitable for the calculation of linear excitations around symmetry-broken solutions. Well-behaved sum rules are obeyed as in the Hartree-Fock (HF) plus RPA approach. Analytical results for a two-site model and numerical results for charge-charge and current-current dynamical correlation functions in one and two dimensions are compared with exact and HF+RPA results, supporting the much better performance of GA+RPA with respect to conventional HF+RPA theory.Comment: 14 pages, 6 figure

    Hydrolysis of organic phosphorus in soil water suspensions after addition of phosphatase enzymes

    Get PDF
    Additions of enzymes involved in organic phosphorus (P) hydrolysis can be used to characterize the hydrolyzability of molybdate-unreactive P (MUP) in soil water extracts. Our aim was to test the feasibility of enzyme additions to soil water suspensions with respect to (1) suitable enzyme preparations and (2) recovery of molybdate-reactive P (MRP). To this end, we compared the substrate specificity of seven commercially available enzyme preparations (acid and alkaline phosphomonoesterase, phytase, and nuclease preparations) and optimized the assay conditions in microplates. We then measured MRP release after the addition of the enzymes to soil water suspensions and filtrates of two Swiss grassland soils (midland and alpine). In some cases, commercial preparations of the same enzyme differed in their specificity, presumably due to contamination with other enzymes, and also in their efficiency in soil suspensions. Addition of EDTA to the buffer was required to decrease sorption of released P in soil suspensions. Enzymatic release of P was consistently equal or higher in soil suspensions than in soil filtrates. However, also more dissolved MUP was present in soil suspensions than in filtrates, since the buffer interacted with the solid phase. Of the total dissolved MUP in soil suspensions, 94 and 61% were hydrolyzable in midland and alpine soil, respectively. More specifically, 60 and 17% of MUP were in nucleic acids, 6 and 39% in simple monoesters, and 28 and 5% in inositol hexakisphosphate in midland and alpine soil, respectively. Thus, we show that the characterization of hydrolyzable organic P in soil suspensions with hydrolytic enzyme preparations may be useful to better understand the availability of soil organic P to enzymatic hydrolysis, but that it requires soil-specific adaptation for optimum P recover

    Influence of Spin Wave Excitations on the Ferromagnetic Phase Diagram in the Hubbard-Model

    Full text link
    The subject of the present paper is the theoretical description of collective electronic excitations, i.e. spin waves, in the Hubbard-model. Starting with the widely used Random-Phase-Approximation, which combines Hartree-Fock theory with the summation of the two-particle ladder, we extend the theory to a more sophisticated single particle approximation, namely the Spectral-Density-Ansatz. Doing so we have to introduce a `screened` Coulomb-interaction rather than the bare Hubbard-interaction in order to obtain physically reasonable spinwave dispersions. The discussion following the technical procedure shows that comparison of standard RPA with our new approximation reduces the occurrence of a ferromagnetic phase further with respect to the phase-diagrams delivered by the single particle theories.Comment: 8 pages, 9 figures, RevTex4, accepted for publication in Phys. Rev.

    Mott transitions in correlated electron systems with orbital degrees of freedom

    Full text link
    Mott metal-insulator transitions in an M-fold orbitally degenerate Hubbard model are studied by means of a generalization of the linearized dynamical mean-field theory. The method allows for an efficient and reliable determination of the critical interaction U_c for any integer filling n and different M at zero temperature. For half-filling a linear dependence of U_c on M is found. Inclusion of the (full) Hund's rule exchange J results in a strong reduction of U_c. The transition turns out to change qualitatively from continuous for J=0 to discontinuous for any finite J

    Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping

    Full text link
    In the present paper we propose a doubly orbitally degenerate narrow-band model with correlated hopping. The peculiarity of the model is taking into account the matrix element of electron-electron interaction which describes intersite hoppings of electrons. In particular, this leads to the concentration dependence of the effective hopping integral. The cases of the strong and weak Hund's coupling are considered. By means of a generalized mean-field approximation the single-particle Green function and quasiparticle energy spectrum are calculated. Metal-insulator transition is studied in the model at different integer values of the electron concentration. With the help of the obtained energy spectrum we find energy gap width and criteria of metal-insulator transition.Comment: minor revisions, published in Phys. Rev.

    Increased availability of phosphorus after drying and rewetting of a grassland soil: processes and plant use

    Get PDF
    Aims: Drying and rewetting (DRW) often increases soil phosphorus (P) availability. Our aims were to elucidate underlying processes and assess potential plant uptake of released P. Methods: Using a grassland soil with low available and high microbial P as a model, we studied the contributions of microbial and physicochemical processes to P release by determining DRW effects on i) C:P ratios of nutrient pulses in fresh and sterilized soils, ii) aggregate stability and iii) P forms released upon soil dispersion. Use of the P pulse by maize was examined in a bioassay and a split-root experiment. Results: The strong P pulse after DRW was larger than that observed for C. Experiments with sterilized soil pointed to a non-microbial contribution to the pulse for P, but not for C. Aggregate disruption after DRW occurred due to slaking, and this released molybdate-reactive and -unreactive P. Maize benefitted from the P pulse only in the bioassay, i.e. when planted after the DRW cycle. Conclusions: The majority of C and P released upon DRW originated from the microbial biomass, but for P release, physicochemical processes were also important. In the field, the released P would only be available to drought-resistant plant
    corecore